Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Medical need, scientific opportunity and the drive for antimalarial drugs

Abstract

Continued and sustainable improvements in antimalarial medicines through focused research and development are essential for the world's future ability to treat and control malaria. Unfortunately, malaria is a disease of poverty, and despite a wealth of scientific knowledge there is insufficient market incentive to generate the competitive, business-driven industrial antimalarial drug research and development that is normally needed to deliver new products. Mechanisms of partnering with industry have been established to overcome this obstacle and to open up and build on scientific opportunities for improved chemotherapy in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global status of resistance to chloroquine and sulphadoxine/ pyrimethamine, the two most widely used antimalarial drugs.

Similar content being viewed by others

References

  1. Calabrese, L. & Fleischer, A. Thalidomide: current and potential clinical applications. Am. J. Med. 108, 487–495 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Wellems, T. & Plowe, C. Chloroquine-resistant malaria. J. Infect. Dis. 184, 770–776 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Sirawaraporn, W. Dihydrofolate reductase and antifolate resistance in malaria. Drug Resist. Update 1, 397–406 (1998).

    Article  CAS  Google Scholar 

  4. Cowman, A. in Malaria Parasite Biology, Pathogenesis and Protection (ed. Sherman, I.) 317–330 (ASM, Washington, 1999).

    Google Scholar 

  5. Report No. WHO/CDS/RBM/2001.33 (World Health Organization, Geneva, 2001).

  6. Report No. WHO/CDS/RBM/2001.35 (World Health Organization, Geneva, 2001).

  7. Report No. WHO/MAL/98.1086 (World Health Organization, Geneva, 1998).

  8. Rosenthal, P. (ed.) Antimalarial Chemotherapy. Mechanisms of Action, Resistance, and New Directions in Drug Discovery (Humana, Totowa, New Jersey, 2001).

    Google Scholar 

  9. Meshnick, S. & Dobson, M. in Antimalarial Chemotherapy. Mechanisms of Action, Resistance, and New Directions in Drug Discovery (ed. Rosenthal, P.) 15–26 (Humana, Totowa, New Jersey, 2001).

    Google Scholar 

  10. Ridley, R. G. & Hudson, A. T. Quinoline anti-malarials. Exp. Opin. Ther. Patents 8, 121–136 (1998).

    Article  CAS  Google Scholar 

  11. O'Neill, P., Bray, P., Hawley, S., Ward, S. & Park, B. 4-Aminoquinolines—past, present, and future: a chemical perspective. Pharmacol. Ther. 77, 29–58 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Tilley, L., Loria, P. & Foley, M. in Antimalarial Chemotherapy. Mechanisms of Action, Resistance, and New Directions in Drug Discovery (ed. Rosenthal, P.) 87–122 (Humana, Totowa, New Jersey, 2001).

    Google Scholar 

  13. Dorsey, G., Fidock, D., Wellems, T. & Rosenthal, P. in Antimalarial Chemotherapy. Mechanisms of Action, Resistance and New Directions in Drug Discovery (ed. Rosenthal, P.) 153–172 (Humana, Totowa, New Jersey, 2001).

    Google Scholar 

  14. Li, Y. & Wu, Y.-L. How chinese scientists discovered qinghaosu (artemisinin) and developed its derivatives. What are the future perspectives? Med. Trop. 58, 9–12 (1998).

    CAS  Google Scholar 

  15. Price, R. Artemisinin drugs: novel antimalarial agents. Exp. Opin. Invest. Drugs 9, 1815–1827 (2000).

    Article  CAS  Google Scholar 

  16. Haynes, R. Artemisinin and derivatives: the future for malaria treatment? Curr. Opin. Infect. Dis. 14, 719–726 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Meshnick, S. in Antimalarial Chemotherapy. Mechanisms of Action, Resistance, and New Directions in Drug Discovery (ed. Rosenthal, P.) 191–202 (Humana, Totowa, New Jersey, 2001).

    Google Scholar 

  18. White, N. Assessment of the pharmacodynamic properties of antimalarial drugs in vivo. Antimicrob. Agents Chemoth. 41, 1413–1422 (1997).

    Article  CAS  Google Scholar 

  19. White, N. Delaying antimalarial drug resistance with combination chemotherapy. Parassitologia 41, 301–308 (1999).

    CAS  PubMed  Google Scholar 

  20. Brockman, A. et al. Plasmodium falciparum antimalarial drug susceptibility on the north-western border of Thailand during five years of extensive use of artesunate-mefloquine. Trans. R. Soc. Trop. Med. Hyg. 94, 537–544 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Bloland, P. B., Ettling, M. & Meek, S. Combination therapy for malaria in Africa: hype or hope? Bull. World Health Organ. 78, 1378–88 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Petras, J. et al. Arteether-induced brain injury in Macaca mulatta. I. The precerebellar nuclei: the lateral reticular nuclei, paramedian reticular nuclei, and perihypoglossal nuclei. Anat. Embryol. (Berl.) 201, 383–397 (2000).

    Article  CAS  Google Scholar 

  23. Dayan, A. Neurotoxicity and artemisinin compounds. Do the observations in animals justify limitation of clinical use? Med. Trop. 58, 32–37 (1998).

    CAS  Google Scholar 

  24. Kissinger, E. et al. Clinical and neurophysiological study of the effects of multiple doses of artemisinin on brain-stem function in Vietnamese patients. Am. J. Trop. Med. Hyg. 63, 2000 (2000).

  25. Leonardi, E., Gilvary, G., White, N. & Nosten, F. Severe allergic reactions to oral artesunate: a report of two cases. Trans. R. Soc. Trop. Med. Hyg. 95, 182–183 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Skelton-Stroud, P. & Mull, R. Positioning, labelling, and medical information control of co-artemether tablets (CPG 56697): a fixed novel combination of artemether and benflumetol. Med. Trop. 58, 77–81 (1998).

    CAS  Google Scholar 

  27. Noedl, H., Allmendinger, T., Prajakwong, S., Wernsdorfer, G. & Wernsdorfer, W. Desbutyl-benflumetol, a novel antimalarial compound: in vitro activity in fresh isolates of Plasmodium falciparum from Thailand. Antimicrob. Agents Chemother. 45, 2106–2109 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Basco, L., Bickii, J. & Ringwald, P. In vitro activity of lumefantrine (benflumetol) against clinical isolates of Plasmodium falciparum in Yaounde, Cameroon. Antimicrob. Agents Chemother. 42, 2347–2351 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ezzet, F., Vugt, M. v., Nosten, F., Looareesuwan, S. & White, N. Pharmacokinetics and pharmacodynamics of lumefantrine (benflumetol) in acute falciparum malaria. Antimicrob. Agents Chemother. 44, 697–704 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sherman, I. in Malaria—Parasite Biology, Pathogenesis and Protection (ed. Sherman, I.) 177–184 (ASM, Washington DC, 1998).

    Google Scholar 

  31. Wolfe, E. et al. Cost-effectiveness of sulfadoxine-pyrimethamine for the prevention of malaria-associated low birth weight. Am. J. Trop. Med. Hyg. 64, 178–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Takechi, M. et al. Therapeutic efficacy of sulphadoxine/pyrimethamine and susceptibility in vitro of P. falciparum isolates to sulphadoxine-pyremethamine and other antimalarial drugs in Malawian children. Trop. Med. Int. Health 6, 429–434 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. White, N. Drug resistance in malaria. Br. Med. Bull. 54, 703–715 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Looareesuwan, S., Chulay, J., Canfield, C. & Hutchinson, D. Malarone (atovaquone and proguanil hydrochloride): a review of its clinical development for treatment of malaria. Malarone Clinical Trials Study Group. Am. J. Trop. Med. Hyg. 60, 533–541 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Vaidya, A. in Antimalarial Chemotherapy. Mechanisms of Action, Resistance, and New Directions in Drug Discovery (ed. Rosenthal, P.) 203–218 (Humana, Totowa, New Jersey, 2001).

    Google Scholar 

  36. Fichera, M. & Roos, D. A plastid organelle as a drug target in apicomplexan parasites. Nature 390, 407–409 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Clough, B. & Wilson, R. in Antimalarial Chemotherapy. Mechanisms of Action, Resistance, and New Directions in Drug Discovery (ed. Rosenthal, P.) 265–286 (Humana, Totowa, New Jersey, 2001).

    Google Scholar 

  38. Macreadie, I., Ginsburg, H., Sirawaraporn, W. & Tilley, L. Antimalarial drug development and new targets. Parasitol. Today 16, 438–444 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Padmanaban, G. & Rangarajan, P. Emerging targets for antimalarial drugs. Expert Opin. Ther. Targets 5, 423–441 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Bannister, L. A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages. Parasitol. Today 16, 427–433 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Francis, S., Sullivan, D. J. & Goldberg, D. Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu. Rev. Microbiol. 51, 97–123 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Coombs, G. et al. Aspartic proteases of Plasmodium falciparum and other parasitic protozoa as drug targets. Trends Parasitol. 17, 532–537 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Shenai, B., Sijwali, P., Singh, A. & Rosenthal, P. Characterization of native and recombinant falcipain-2, a principal trophozoite cysteine protease and essential hemoglobinase of Plasmodium falciparum. J. Biol. Chem. 275, 29000–29010 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Eggleson, K., Duttin, K. & Goldberg, D. Identification and characterisation of Falcilysin, a metallopeptidase involved in hemoglobin catabolism within the malarial parasite Plasmodium falciparum. J. Biol. Chem. 274, 32411–32417 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Pagola, S., Stephens, P., Bohle, D., Kosar, A. & Madsen, S. The structure of malaria pigment β-haematin. Nature 16, 307–310 (2000).

    Article  ADS  Google Scholar 

  46. Chou, A., Cherli, R. & Fitch, C. Ferriprotoporphyrin IX fulfills the criteria for identification as the chloroquine receptor of malaria parasites. Biochemistry 19, 1543–1549 (1980).

    Article  CAS  PubMed  Google Scholar 

  47. Sullivan, D. J., Gluzman, I., Russell, D. & Goldberg, D. On the molecular mechanism of chloroquine's antimalarial action. Proc. Natl Acad. Sci. USA 93, 11865–11870 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bray, P., Mungthin, M., Ridley, R. & Ward, S. Access to hematin: the basis of chloroquine resistance. Mol. Pharmacol. 54, 170–179 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Mungthin, M., Bray, P., Ridley, R. & Ward, S. Central role of hemoglobin degradation in mechanisms of action of 4-aminoquinolines, quinoline methanols, and phenanthrene methanols. Antimicrob. Agents Chemother. 42, 2973–2977 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sullivan, D. J., Matile, H., Ridley, R. & Goldberg, D. A common mechanism for blockade of heme polymerization by antimalarial quinolines. J. Biol. Chem. 273, 31103–31107 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Meshnick, S., Taylor, T. & Kamchonwongpaisan, S. Artemisinin and the antimalarial endoperoxides: From herbal remedy to targeted chemotherapy. Microbiol. Rev. 60, 301–315 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ridley, R., Dorn, A., Vippagunta, S. & Vennerstrom, J. Haematin (haem) polymerisation and its inhibition by quinoline antimalarials. Ann. Trop. Med. Parasitol. 91, 559–566 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Sugioka, Y. & Suzuki, M. The chemical basis for the ferriprotoporphyrin IX–chloroquine complex induced lipid peroxidation. Biochim. Biophys. Acta 1074, 19–24 (1991).

    Article  CAS  PubMed  Google Scholar 

  54. Ginsburg, H. & Krugliak, M. Chloroquine—some open questions on its antimalarial mode of action and resistance. Drug Resist. Update 2, 63–70 (1999).

    Article  Google Scholar 

  55. Olliaro, P., Haynes, R., Meunier, B. & Yuthavong, Y. Possible modes of action of the artemisinin-type compounds. Trends Parasitol. 17, 122–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Fidock, D. A. et al. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol. Cell 6, 861–871 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nomura, T. et al. Evidence for different mechanisms of chloroquine resistance in 2 Plasmodium species that cause human malaria. J. Infect. Dis. 183, 1653–1661 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Duraisingh, M., Roper, C., Walliker, D. & Warhurst, D. Increased sensitivity to the antimalarials mefloquine and artemisinin is conferred by mutations in the pfmdr1 gene of Plasmodium falciparum. Mol. Microbiol. 36, 955–961 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Reed, M. B., Saliba, K. J., Caruana, S. R., Kirk, K. & Cowman, A. F. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403, 906–909 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Cowman, A., Galatis, D. & Thompson, J. Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfmdr 1 gene and cross-resistance to halofantrine and quinine. Proc. Natl Acad. Sci. USA 91, 1143–1147 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stocks, P. A., Raynes, K. & Ward, S. in Antimalarial Chemotherapy. Mechanisms of Action, Resistance, and New Directions in Drug Discovery (ed. Rosenthal, P.) 235–253 (Humana, Totowa, New Jersey, 2001).

    Google Scholar 

  62. Kurosawa, Y. et al. Hematin polymerization assay as a high-throughput screen for identification of new antimalarial pharmacophores. Antimicrob. Agents Chemother. 44, 2638–2644 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Martin, S., Oduola, A. & Milhous, W. Reversal of chloroquine resistance in Plasmodium falciparum by verapamil. Science 235, 899–901 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Bray, P. & Ward, S. A comparison of the phenomenology and genetics of multidrug resistance in cancer cells and quinoline resistance in Plasmodium falciparum. Pharmacol. Ther. 77, 1–28 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Sowunmi, A. et al. Enhanced efficacy of chloroquine-chlorpheniramine combination in acute uncomplicated falciparum malaria in children. Trans. R. Soc. Trop. Med. Hyg. 91, 63–67 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Posner, G. Antimalarial peroxides in the qinghaosu (artemisinin) and yinghaosu families. Expert Opin. Ther. Patents 8, 1487–1493 (1998).

    Article  CAS  Google Scholar 

  67. Expert Opinion on: Water soluble trioxanes as potent and safe antimalarial agents. Exp. Opin. Ther. Patents 11, 1351–1354 (2001).

  68. Vroman, J., Alvim-Gaston, M. & Avery, M. Current progress in the chemistry, medicinal chemistry and drug design of artemisinin-based antimalarials. Curr. Pharmaceut. Des. 5, 101–108 (1999).

    CAS  Google Scholar 

  69. Dong, Y. & Vennerstrom, J. Peroxidic antimalarials. Exp. Opin. Ther. Patents 11, 1753–1760 (2001).

    Article  CAS  Google Scholar 

  70. Kohler, S. et al. A plastid of probable green algal origin in Apicomplexan parasites. Science 275, 1485–1489 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Wilson, R. et al. Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J. Mol. Biol. 261, 155–172 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Waller, R. et al. Nuclear encoded proteins target the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc. Natl Acad. Sci. USA 95, 12352–12357 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Surolia, N. & Surolia, A. Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum. Nature Med. 7, 167–173 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Jomaa, H. et al. Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285, 1573–1576 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Ohkanda, J. et al. Peptidomimetic inhibnitors of protein farnesyltransferases show antimalarial activity. Bioorg. Med. Chem. Lett. 11, 761–764 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Fry, M. & Beesley, J. Mitochondria of mammalian Plasmodium spp. Parasitol. Today 102, 17–26 (1991).

    Article  Google Scholar 

  77. Alzeer, J. et al. Phenyl beta-methoxyacrylates: a new antimalarial pharmacophore. J. Med. Chem. 43, 560–568 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Hyde, J. Mechanisms of resistance of Plasmodium falciparum to antimalarial drugs. Microb. Infect. (in the press).

  79. Winstanley, P. Chemotherapy for falciparum malaria: the armoury, the problems and the prospects. Parasitol. Today 16, 146–153 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Kinyanjui, S., Mberu, E., Winstanley, P., Jacobus, D. & Watkins, W. The antimalarial triazine WR99210 and the prodrug PS-15: folate reversal of in vitro activity against Plasmodium falciparum and a non-antifolate mode of action of the prodrug. Am. J. Trop. Med. Hyg. 60, 943–947 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Olliaro, P. & Yuthavong, Y. An overview of chemotherapeutic targets for antimalarial drug discovery. Pharmacol. Ther. 81, 91–110 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Dunn, C. et al. The structure of lactate dehydrogenase from Plasmodium falciparum reveals a new target for anti-malarial design. Nature Struct. Biol. 3, 912–915 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Woodrow, C., Penny, J. & Krishna, S. Intraerythrocytic Plasmodium falciparum expresses a high affinity facilitative hexose transporter. J. Biol. Chem. 274, 7272–7277 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Kirk, K. Membrane transport in the malaria-infected erythrocyte. Physiol. Rev. 81, 495–537 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Desai, S., Bezrukov, S. & Zimmerberg, J. A voltage-dependent channel involved in nutrient uptake by red blood cells infected with the malaria parasite. Nature 406, 1001–1005 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Blackman, M. Proteases involved in erythrocyte invasion by the malaria parasite: function and potential as drug targets. Curr. Drug Targets 1, 59–83 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Vial, H. et al. Transport of phospholipid synthesis precursors and lipid trafficking into malaria-infected erythrocytes. Novartis Found. Symp. 226, 82–88 (1999).

    Google Scholar 

  88. Kappes, B., Doerig, C. & Graeser, R. An overview of Plasmodium protein kinases. Parasitol. Today 15, 449–454 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Horrocks, P., Bowman, S., Kyes, S., Waters, A. & Craig, A. Entering the post-genomic era of malaria research. Bull. World Health Organ. 78, 1424–1437 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Buysse, J. The role of genomics in antibacterial target discovery. Curr. Med. Chem. 8, 1763–1776 (2001).

    Article  Google Scholar 

  91. Teichman, S., Chothia, C. & Gerstein, M. Advances in structural genomics. Curr. Opin. Struct. Biol. 9, 390–399 (1999).

    Article  Google Scholar 

  92. Wu, Y., Kirkman, L. & Wellems, T. Transformation of Plasmodium falciparum malaria parasites by homologous integration of plasmids that confer resistance to pyrimethamine. Proc. Natl Acad. Sci. USA 93, 1130–1134 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Waters, A. et al. Transfection of malaria parasites. Methods 13, 134–147 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Ridley, R. Antimalarial drug discovery and development — an industrial perspective. Exp. Parasitol. 87, 293–304 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Venkatesh, S. & Lipper, R. Role of the development scientist in compound lead selection and optimization. J. Pharm. Sci. 89, 145–154 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Lipinski, C., Lombardo, F., Dominy, B. & Feeney, P. Experimental and computational approaches to estimate solubility in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997).

    Article  CAS  Google Scholar 

  97. Alnwick, D. Roll back malaria—what are the prospects? Bull. World Health Organ. 78, 1377 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Sachs, J. A new global commitment to disease control in Africa. Nature Med. 7, 521–523 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank W. Jacobs and D. Fidock for allowing me to describe their concept for transfecting genes from human Plasmodium species into rodent Plasmodium species; T. Sukwa for discussions; and D. Fidock for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Ridley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ridley, R. Medical need, scientific opportunity and the drive for antimalarial drugs. Nature 415, 686–693 (2002). https://doi.org/10.1038/415686a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/415686a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing