Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators

Abstract

Nuclear hormone receptors are ligand-activated transcription factors that regulate the expression of genes that are essential for development, reproduction and homeostasis1. The hormone response is mediated through recruitment of p160 receptor coactivators and the general transcriptional coactivator CBP/p300, which function synergistically to activate transcription2. These coactivators exhibit intrinsic histone acetyltransferase activity, function in the remodelling of chromatin, and facilitate the recruitment of RNA polymerase II and the basal transcription machinery3. The activities of the p160 coactivators are dependent on CBP. Both coactivators are essential for proper cell-cycle control, differentiation and apoptosis, and are implicated in cancer and other diseases4,5,6,7. To elucidate the molecular basis of assembling the multiprotein activation complex, we undertook a structural and thermodynamic analysis of the interaction domains of CBP and the activator for thyroid hormone and retinoid receptors8. Here we show that although the isolated domains are intrinsically disordered, they combine with high affinity to form a cooperatively folded helical heterodimer. Our study uncovers a unique mechanism, called ‘synergistic folding’, through which p160 coactivators recruit CBP/p300 to allow transmission of the hormonal signal to the transcriptional machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural and thermodynamic characterization of free and complexed ACTR and CBP.
Figure 2: Solution structure of the ACTR–CBP complex.
Figure 3: Conserved interactions in the ACTR–CBP complex.

Similar content being viewed by others

References

  1. Mangelsdorf, D. J. et al. The nuclear receptor superfamily: the second decade. Cell 83, 835–839 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chakravarti, D. et al. Role of CBP/P300 in nuclear receptor signalling. Nature 383, 99–103 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Dilworth, F. J. & Chambon, P. Nuclear receptors coordinate the activities of chromatin remodeling complexes and coactivators to facilitate initiation of transcription. Oncogene 20, 3047–3054 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Goodman, R. H. & Smolik, S. CBP/p300 in cell growth, transformation, and development. Genes Dev. 14, 1553–1577 (2000).

    CAS  PubMed  Google Scholar 

  5. Aranda, A. & Pascual, A. Nuclear hormone receptors and gene expression. Physiol. Rev. 81, 1269–1304 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Anzick, S. L. et al. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277, 965–968 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Petrij, F. et al. Rubinstein–Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376, 348–351 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Chen, H. et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90, 569–580 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Li, C., Schwabe, J. W., Banayo, E. & Evans, R. M. Coexpression of nuclear receptor partners increases their solubility and biological activities. Proc. Natl Acad. Sci. USA 94, 2278–2283 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sheppard, H. M., Harries, J. C., Hussain, S., Bevan, C. & Heery, D. M. Analysis of the steroid receptor coactivator 1 (SRC1)-CREB binding protein interaction interface and its importance for the function of SRC1. Mol. Cell Biol. 21, 39–50 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. McInerney, E. M. et al. Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Dev. 12, 3357–3368 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin, C. H. et al. A small domain of CBP/p300 binds diverse proteins. solution structure and functional studies. Mol. Cell 8, 581–590 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Voegel, J. J. et al. The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. EMBO J. 17, 507–519 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nolte, R. T. et al. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature 395, 137–143 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Darimont, B. D. et al. Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev. 12, 3343–3356 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shiau, A. K. et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95, 927–937 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Torchia, J. et al. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387, 677–684 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Nucifora, F. C. et al. Interference by huntingtin and atrophin-1 with CBP-mediated transcription leading to cellular toxicity. Science 291, 2423–2428 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Wright, P. E. & Dyson, H. J. Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm. J. Mol. Biol. 293, 321–331 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Clore, G. M. & Gronenborn, A. M. Multidimensional heteronuclear nuclear magnetic resonance of proteins. Methods Enzymol. 239, 349–363 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Bax, A. et al. Measurement of homo- and heteronuclear J-couplings from quantitative J correlation. Methods Enzymol. 239, 79–105 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Grzesiek, S., Kuboniwa, H., Hinck, A. P. & Bax, A. Multiple-quantum line narrowing for measurement of Hα–Hβ J coupling in isotopically enriched proteins. J. Am. Chem. Soc. 117, 5312–5315 (1995).

    Article  CAS  Google Scholar 

  24. Zwahlen, C. et al. Methods for measurement of intermolecular NOEs by multinuclear NMR spectroscopy: Application to a bacteriophage lambda N-peptide/boxB RNA complex. J. Am. Chem. Soc. 119, 6711–6721 (1997).

    Article  CAS  Google Scholar 

  25. Güntert, P., Mumenthaler, C. & Wüthrich, K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298 (1997).

    Article  PubMed  Google Scholar 

  26. Pearlman, D. A. et al. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comp. Phys. Comm. 91, 1–41 (1995).

    Article  ADS  CAS  Google Scholar 

  27. Duggan, B. M., Legge, G. B., Dyson, H. J. & Wright, P. E. SANE (structure assisted NOE evaluation): an automated model-based approach for NOE assignment. J. Biomol. NMR 19, 321–329 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Laskowski, R. A., Rullmann, J. A. C., MacArthur, M. W., Kaptein, R. & Thornton, J. M. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: A program for display and analysis of macromolecular structures. J. Mol. Graphics 14, 51–55 (1996).

    Article  CAS  Google Scholar 

  30. Myers, J. K., Pace, C. N. & Scholtz, J. M. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 4, 2138–2148 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Allen for technical help and M. Pique for help with computer graphics. This work was supported by grants from the NIH and by the Skaggs Institute for Chemical Biology. S.J.D. was supported by a fellowship from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter E. Wright.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demarest, S., Martinez-Yamout, M., Chung, J. et al. Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature 415, 549–553 (2002). https://doi.org/10.1038/415549a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415549a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing