Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two-component regulator of Enterococcus faecalis cytolysin responds to quorum-sensing autoinduction

Abstract

Bacteria of the genus Enterococcus are the main causes of highly antibiotic-resistant infections that are acquired in hospitals1,2. Many clinical isolates of Enterococcus faecalis produce an exotoxin called cytolysin that contributes to bacterial virulence3. In addition to its toxin activity, the cytolysin is bactericidal for nearly all Gram-positive organisms4. An understanding of conditions that regulate cytolysin expression has advanced little since its initial description5. Here we show that the products of two genes, cylR1 and cylR2, which lack homologues of known function, work together to repress transcription of cytolysin genes. Derepression occurs at a specific cell density when one of the cytolysin subunits reaches an extracellular threshold concentration. These observations form the basis of a model for the autoinduction of the cytolysin by a quorum-sensing mechanism involving a two-component regulatory system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of cytolysin maturation and regulation.
Figure 2: Transcriptional fusions to the β-galactosidase (lacZ) reporter gene in the shuttle vector pTCV-lac9.
Figure 3: Induction of reporter gene expression by CylLS′′.
Figure 4: CylLS′′ induces transcription of cylLL and cylL851S, but not cylR1 or cylR2.

Similar content being viewed by others

References

  1. National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1992–April 2000, issued June 2000. Am. J. Infect. Contr. 28, 429–448 (2000).

  2. Mundy, L. M., Sahm, D. F. & Gilmore, M. Relationships between enterococcal virulence and antimicrobial resistance. Clin. Microbiol. Rev. 13, 513–522 (2000).

    Article  CAS  Google Scholar 

  3. Haas, W. & Gilmore, M. S. Molecular nature of a novel bacterial toxin: the cytolysin of Enterococcus faecalis. Med. Microbiol. Immunol. (Berl) 187, 183–190 (1999).

    Article  CAS  Google Scholar 

  4. Brock, T. D., Peacher, B. & Pierson, D. Survey of the bacteriocines of enterococci. J. Bacteriol. 86, 702–707 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Todd, E. W. A comparative serological study of streptolysins derived from human and from animal infections, with notes on pneumococcal hemolyson, tetanolysin and staphylococcus toxin. J. Pathol. Bacteriol. 39, 299–321 (1934).

    Article  CAS  Google Scholar 

  6. Gilmore, M. S., Segarra, R. A. & Booth, M. C. An HlyB-type function is required for expression of the Enterococcus faecalis hemolysin/bacteriocin. Infect. Immun. 58, 3914–3923 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Booth, M. C. et al. Structural analysis and proteolytic activation of Enterococcus faecalis cytolysin, a novel antibiotic. Mol. Microbiol. 21, 1175–1184 (1996).

    Article  CAS  Google Scholar 

  8. Coburn, P. S., Hancock, L. E., Booth, M. C. & Gilmore, M. S. A novel means of self-protection, unrelated to toxin activation, confers immunity to the bactericidal effects of the Enterococcus faecalis cytolysin. Infect. Immun. 67, 3339–3347 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Poyart, C. & Trieu-Cuot, P. A broad-host-range mobilizable shuttle vector for the construction of transcriptional fusions to β-galactosidase in gram-positive bacteria. FEMS Microbiol. Lett. 156, 193–198 (1997).

    Article  CAS  Google Scholar 

  10. Cserzo, M., Wallin, E., Simon, I., von Heijne, G. & Elofsson, A. Prediction of transmembrane α-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng. 10, 673–676 (1997).

    Article  CAS  Google Scholar 

  11. Hofmann, K. & Stoffel, W. TMbase–a database of membrane spanning protein segments. Biol. Chem. Hoppe-Seyler 374, 166 (1993).

    Google Scholar 

  12. Tusnady, G. E. & Simon, I. Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J. Mol. Biol. 283, 489–506 (1998).

    Article  CAS  Google Scholar 

  13. Brennan, R. G. & Matthews, B. W. The helix-turn-helix DNA binding motif. J. Biol. Chem. 264, 1903–1906 (1989).

    CAS  PubMed  Google Scholar 

  14. Schultz, J., Milpetz, F., Bork, P. & Ponting, C. P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl Acad. Sci. USA 95, 5857–5864 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 28, 263–266 (2000).

    Article  CAS  Google Scholar 

  16. Gilmore, M. S. et al. Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants. J. Bacteriol. 176, 7335–7344 (1994).

    Article  CAS  Google Scholar 

  17. Dunny, G. M. & Winans, S. C. Cell–Cell Signaling in Bacteria (ASM, Washington DC, 1999).

    Google Scholar 

  18. Ike, Y. & Clewell, D. B. Genetic analysis of the pAD1 pheromone response in Streptococcus faecalis, using transposon Tn917 as an insertional mutagen. J. Bacteriol. 158, 777–783 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hoch, J. A. Two-component and phosphorelay signal transduction. Curr. Opin. Microbiol. 3, 165–170 (2000).

    Article  CAS  Google Scholar 

  20. Zhang, H. Z., Hackbarth, C. J., Chansky, K. M. & Chambers, H. F. A proteolytic transmembrane signaling pathway and resistance to β-lactams in staphylococci. Science 291, 1962–1965 (2001).

    Article  ADS  CAS  Google Scholar 

  21. Francia, M. V. et al. Completion of the nucleotide sequence of the Enterococcus faecalis conjugative virulence plasmid pAD1 and identification of a second transfer origin. Plasmid 46, 117–127 (2001).

    Article  CAS  Google Scholar 

  22. Dong, Y. H. et al. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411, 813–817 (2001).

    Article  ADS  CAS  Google Scholar 

  23. Sambrook, J. & Russell, D. W. Molecular Cloning (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2001).

    Google Scholar 

  24. Shepard, B. D. & Gilmore, M. S. Identification of aerobically and anaerobically induced genes in Enterococcus faecalis by random arbitrarily primed PCR. Appl. Environ. Microbiol. 65, 1470–1476 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Coburn, L. Hancock, M. Engelbert, C. Cox, K. Hatter, D. Johnson, B. Jett and K. Gilmore for technical support and critical review of the manuscript. This work was supported by grants from the National Institutes of Health and Research to Prevent Blindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Gilmore.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haas, W., Shepard, B. & Gilmore, M. Two-component regulator of Enterococcus faecalis cytolysin responds to quorum-sensing autoinduction. Nature 415, 84–87 (2002). https://doi.org/10.1038/415084a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415084a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing