Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Drosophila Stardust interacts with Crumbs to control polarity of epithelia but not neuroblasts

Abstract

Establishing cellular polarity is critical for tissue organization and function. Initially discovered in the landmark genetic screen for Drosophila developmental mutants1,2,3,4, bazooka, crumbs, shotgun and stardust mutants exhibit severe disruption in apicobasal polarity in embryonic epithelia, resulting in multilayered epithelia, tissue disintegration, and defects in cuticle formation5. Here we report that stardust encodes single PDZ domain MAGUK (membrane-associated guanylate kinase) proteins that are expressed in all primary embryonic epithelia from the onset of gastrulation. Stardust colocalizes with Crumbs6 at the apicolateral boundary, although their expression patterns in sensory organs differ. Stardust binds to the carboxy terminus of Crumbs in vitro, and Stardust and Crumbs are mutually dependent in their stability, localization and function in controlling the apicobasal polarity of epithelial cells. However, for the subset of ectodermal cells that delaminate and form neuroblasts, their polarity requires the function of Bazooka7,8, but not of Stardust or Crumbs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cloning of sdt.
Figure 2: Developmental expression pattern of Sdt.
Figure 3: Characterization of polarity phenotype in sdt mutants.
Figure 4: Sdt interacts with Crb.

Similar content being viewed by others

References

  1. Nüsslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    Article  ADS  Google Scholar 

  2. Jurgens, G., Wieschaus, E., Nüsslein-Volhart, C. & Kluding, H. Mutation affecting the pattern of the larval cuticle in Drosophila melanogaster: II. Zygotic loci on the third chromosome. Roux Arch. Dev. Biol. 193, 283–295 (1984).

    Article  CAS  Google Scholar 

  3. Nüsslein-Volhart, C., Wieschaus, E. & Kluding, H. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster: I. Zygotic loci on the second chromosome. Roux Arch. Dev. Biol. 193, 267–282 (1984).

    Article  Google Scholar 

  4. Wieschaus, E., Nüsslein-Volhart, C. & Jurgens, G. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster: III. Zygotic loci on the X chromosome and fourth chromosome. Roux Arch. Dev. Biol. 193, 296–307 (1984).

    Article  CAS  Google Scholar 

  5. Müller, H.-A. J. Genetic control of epithelial cell polarity: lessons from Drosophila. Dev. Dyn. 218, 52–67 (2000).

    Article  Google Scholar 

  6. Tepass, U., Theres, C. & Knust, E. crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell 61, 787–799 (1990).

    Article  CAS  Google Scholar 

  7. Schober, M., Schaefer, M. & Knoblich, J. A. Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 402, 548–551 (1999).

    Article  ADS  CAS  Google Scholar 

  8. Wodarz, A., Ramrath, A., Kuchinke, U. & Knust, E. Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 402, 544–547 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Tepass, U. & Knust, E. crumbs and stardust act in a genetic pathway that controls the organization of epithelia in Drosophila melanogaster. Dev. Biol. 159, 311–326 (1993).

    Article  CAS  Google Scholar 

  10. Dimitratos, S. D., Woods, D. F., Stathakis, D. G. & Bryant, P. J. Signalling pathways are focused at specialized regions of the plasma membrane by scaffolding proteins of the MAGUK family. BioEssays 21, 912–921 (1999).

    Article  CAS  Google Scholar 

  11. Gonzalez-Mariscal, L., Betanzos, A. & Avila-Flores, A. MAGUK proteins: structure and role in the tight junction. Cell Dev. Biol. 11, 315–324 (2000).

    CAS  Google Scholar 

  12. Petronczki, M. & Knoblich, J. A. DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila. Nature Cell Biol. 3, 43–49 (2001).

    Article  CAS  Google Scholar 

  13. Bhat, M. et al. Discs Lost, a novel multi-PDZ domain protein establishes and maintains epithelial polarity. Cell 96, 833–845 (1999).

    Article  CAS  Google Scholar 

  14. Bilder, D. & Perrimon, N. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 403, 676–680 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Kamberov, E. et al. Molecular cloning and characterization of Pals, proteins associated with mLin-7. J. Biol. Chem. 275, 11425–11431 (2000).

    Article  CAS  Google Scholar 

  16. Müller, H.-A. J. & Wieschaus, E. armadillo, bazooka, and stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila. J. Cell Biol. 134, 149–163 (1996).

    Article  Google Scholar 

  17. Tepass, U. Epithelial differentiation in Drosophila. BioEssays 19, 673–682 (1997).

    Article  CAS  Google Scholar 

  18. Tepass, U. & Hartenstein, V. The development of cellular junctions in the Drosophila embryo. Dev. Biol. 161, 563–596 (1994).

    Article  CAS  Google Scholar 

  19. Tepass, U. Crumbs, a component of the apical membrane, is required for zonula adherens formation in primary epithelia of Drosophila. Dev. Biol. 177, 217–225 (1996).

    Article  CAS  Google Scholar 

  20. Grawe, F., Wodarz, A., Lee, B., Knust, E. & Skaer, H. The Drosophila genes crumbs and stardust are involved in the biogenesis of adherens junctions. Development 122, 951–959 (1996).

    Article  CAS  Google Scholar 

  21. Wodarz, A., Ramrath, A., Grimm, A. & Knust, E. Drosophila atypical portein kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts. J. Cell Biol. 150, 1361–1374 (2000).

    Article  CAS  Google Scholar 

  22. Shen, C.-P., Jan, L. Y. & Jan, Y. N. Miranda is required for the asymmetric localization of Prospero during mitosis in Drosophila. Cell 90, 449–458 (1997).

    Article  CAS  Google Scholar 

  23. Klebes, A. & Knust, E. A conserved motif in Crumbs is required for E-cadherin localisation and zonula adherens formation in Drosophila. Curr. Biol. 10, 76–85 (2000).

    Article  CAS  Google Scholar 

  24. Wodarz, A., Hinz, U., Engelbert, M. & Knust, E. Expression of Crumbs confers apical character on plasma membrane domains of ectodermal epithelia of Drosophila. Cell 82, 67–76 (1995).

    Article  CAS  Google Scholar 

  25. Brenman, J. E. et al. Localization of postsynaptic density-93 to dendritic microtubules and interaction with microtubule-associated protein 1A. J. Neurosci. 18, 8805–8813 (1998).

    Article  CAS  Google Scholar 

  26. Shin, H., Hsueh, Y.-P., Yang, F.-C., Kim, E. & Sheng, M. An intramolecular interaction between Src homology 3 domain and guanylate kinase-like domain required for channel clustering by Postsynaptic Density-95/SAP90. J. Neurosci. 20, 3580–3587 (2000).

    Article  CAS  Google Scholar 

  27. Den Hollander, A. I. et al. Mutations in a human homologue of Drosophila crumbs cause retinitis pigmentosa (RP12). Nature Genet. 23, 217–221 (1999).

    Article  CAS  Google Scholar 

  28. Rashbass, P. & Skaer, H. Cell polarity: nailing Crumbs to the scaffold. Curr. Biol. 10, R234–R236 (2000).

    Article  CAS  Google Scholar 

  29. Casso, D., Ramirez-Weber, F., & Kornberg, T. B. GFP-tagged balancer chromosomes for Drosophila melanogaster. Mech. Dev. 91, 451–454 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to D. Bilder, M. Bhat, T. Uemura, P. J. Bryant, U. Tepass, E. Knust, E. Wieschaus, Developmental Studies Hybridoma Bank and Bloomington Stock Center for providing fly stocks, antibodies and constructs. We thank S. Barbel, L. Ackerman and S. Younger-Shepherd for technical assistance and M. Rothenberg, D. Cox, S. Abdelilah and U. Tepass for critical comments on the manuscript. B.S. is supported by a grant from the National Institutes of Health. Y.H. is a Research Associate and N.P., L.Y.J. and Y.N.J are Investigators of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuh Nung Jan.

Supplementary information

Figure 1

(GIF 105.83 KB)

Protein sequence alignment of the predicted C. elegans protein C10B7.4, SdtA, and mouse PALS-1. Only the alignment of C-terminal half of the proteins is shown. Asterisk indicates where SdtXP96 protein is truncated.

Antibody Dilution Factors for "Methods" section: Dilution factors for primary antibodies were as follows: rabbit anti-Sdt C-terminus 1:100, mouse MAb 22C10 1:200, mouse anti-Crb 1:100 (Cq4, Hybridoma Bank), mouse anti-Arm 1:50 (Hybridoma Bank), mouse anti-Cor 1:500 (Hybridoma Bank), rat anti-DE-Cad 1:20 (from T. Uemura), guinea pig anti-Dlg 1:1000 (from P.J. Bryant), rabbit anti-Baz 1:1000 (ref. 7), rabbit anti-DPar-6 1:500 (ref. 12), rabbit anti-aPKC 1:1000(ref. 21), rabbit anti-Dlt 1:1000 (ref. 13), rabbit anti-Mir 1:1500 (ref. 22), rabbit anti-Scrib 1:1500 (ref. 14), rabbit anti-b-gal 1:3000 (ICN).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, Y., Stronach, B., Perrimon, N. et al. Drosophila Stardust interacts with Crumbs to control polarity of epithelia but not neuroblasts. Nature 414, 634–638 (2001). https://doi.org/10.1038/414634a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/414634a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing