Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Frequency detection and temporally dispersed synaptic signal association through a metabotropic glutamate receptor pathway

Abstract

IN the classical view, a central neuron integrates incoming synaptic information by simple algebraic summation of the resultant bioelectrical signals that coincide in time. The voltage dependence of the NMDA (N-methyl-D-aspartate) type of iono-tropic glutamate receptor endows neurons with an additional tool that allows one synaptic input to influence another, providing, again, that the two are active simultaneously1. Here we identify a new mechanism by which non-coincident signals generated by different synaptic inputs are integrated. The device serves to regulate neuronal excitation through G-protein-coupled, metabotropic glutamate receptors (mGluRs)2 in a powerful and specific manner. We show that, in cerebellar Purkinje cells, a single activation of the climbing–fibre input markedly potentiatesmGluR-mediated excitation at parallel–fibre synapses3. The potentiation results from a transient rise in cytosolic Ca2+ which is 'memorized' in such a way that it promotes excitation through mGluRs for about two minutes. A Ca2+ -transient is also effective if imposed up to two seconds after parallel-fibre stimulation. By allowing temporally and spatially dispersed synaptic signals to be assimilated, this mechanism adds a new element to the computational power of central neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bliss, T. V. P. & Collingridge, G. L. Nature 361, 31–39 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Tanabe, Y., Masu, M., Ishii, T., Shigemoto, R. & Nakanishi, S. Neuron 8,169–179 (1992).

    Article  CAS  Google Scholar 

  3. Batchelor, A. M., Madge, D. J. & Garthwaite, J. Neuroscience 63, 911–915 (1994).

    Article  CAS  Google Scholar 

  4. Llano, I., Marty, A., Armstrong, C. M. & Konnerth, A. J. Physiol. (Lond.) 434,183–213 (1991).

    Article  CAS  Google Scholar 

  5. Conquet, F. et al. Nature 372, 237–243 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Masu, M., Tanabe, Y., Tsuchida, K., Shigemoto, R. & Nakanishi, S. Nature 349, 760–765 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Berridge, M. J. Nature 361, 315–325 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Staub, C., Vranesic, I. & Knöpfel, T. Eur. J. Neurosci. 4, 832–839 (1992).

    Article  Google Scholar 

  9. Merrill, E. G., Wall, P. D. & Yaksh, T. L. J. Physiol. (Lond.) 284,127–145 (1978).

    Article  CAS  Google Scholar 

  10. Eccles, J. C., Ito, M. & Szentágothai, J. The Cerebellum as a Neuronal Machine (Springer, Berlin, 1967).

    Book  Google Scholar 

  11. Llinás, R. & Sugimori, M. J. Physiol. (Lond.) 305,171–195 (1980).

    Article  Google Scholar 

  12. Ross, W. N. & Werman, R. J. Physiol. (Lond.) 389, 319–336 (1987).

    Article  CAS  Google Scholar 

  13. Ellis-Davies, G. C. R. & Kaplan, J. H. Proc. Natl Acad. Sci. USA 91,187–191 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Abe, T. et al. J. Biol. Chem. 267,13361–13368 (1992).

    CAS  Google Scholar 

  15. Miyakawa, H., Lev-Ram, V., Lasser-Ross, N. & Ross, W. N. J. Neurophysiol. 68, 1178–1189 (1992).

    Article  CAS  Google Scholar 

  16. Sugimori, M. & Llinás, R. R. Proc. Natl Acad. Sci. USA 87, 5084–5088 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Huang, K. -P. Trends Neurosci. 12, 425–432 (1989).

    Article  CAS  Google Scholar 

  18. Marsh, S. J., Trouslard, J., Leaney, J. L. & Brown, D. A. Neuron 15, 729–737 (1995).

    Article  CAS  Google Scholar 

  19. Eilers, J., Augustine, G. J. & Konnerth, A. Nature 373,155–158 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Albus, J. S. Math. Biosci. 10, 25–61 (1971).

    Article  Google Scholar 

  21. Marr, D. A. J. Physiol. (Lond.) 202, 437–470 (1969).

    Article  CAS  Google Scholar 

  22. Ito, M. Annu. Rev. Neurosci. 12, 85–102 (1989).

    Article  CAS  Google Scholar 

  23. Sakurai, M. Proc. Natl Acad. Sci. USA 87, 3383–3385 (1990).

    Article  ADS  CAS  Google Scholar 

  24. Garthwaite, J. & Batchelor, A. M. J. Neurosci. Meth. 64, 189–197 (1996).

    Article  CAS  Google Scholar 

  25. Batchelor, A. M. & Garthwaite, J. Neuropharmacol. J. 32, 11–20 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batchelor, A., Garthwaite, J. Frequency detection and temporally dispersed synaptic signal association through a metabotropic glutamate receptor pathway. Nature 385, 74–77 (1997). https://doi.org/10.1038/385074a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385074a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing