Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Diamond and silicon carbide in impact melt rock from the Ries impact crater

Abstract

SHOCK-PRODUCED diamond and lonsdaleite (the hexagonal polymorph) were first observed in experiments involving explosions1. Several classes of meteorites2,3 contain microcrystalline diamond aggregates that are thought to be produced by impacts with the Earth or in space. Diamonds have also been found in association with several Russian impact craters4 and in Cretaceous/Tertiary boundary impact ejecta5,6; these too have most often been interpreted as having formed by shock in the solid state4. Here we report the occurrence of diamond lonsdaleite plates and cubic diamond in association with silicon carbide, in impact melts from the Ries crater in southern Germany. We interpret these occurrences as evidence that these phases can be formed by chemical vapour deposition from the ejecta plume of an impact crater. It follows that cubic diamond and silicon carbide may be formed at any impact site from vaporized carbon-bearing rocks, and hence may be used as a reliable diagnostic tool for hypervelocity impact on Earth. This process may also explain the occurrence of diamonds found in sediments (carbonados7), which may result from the 'heavy bom-bardment' period of early Earth history, rather than from mantle-derived diatremes8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. DeCarli, P. S. & Jamieson, J. C. Science 133, 1821–1822 (1961).

    Article  ADS  CAS  Google Scholar 

  2. Lipschutz, M. E. & Anders, E. Geochim. cosmochim. Acta 24, 83–105 (1961).

    Article  ADS  CAS  Google Scholar 

  3. Vdovykin, G. P. Space Sci. Rev. 10, 483–510 (1970).

    Article  ADS  CAS  Google Scholar 

  4. Masaitis, V. L. Meteoritics 27, 21–27 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Carlisle, D. B. & Braman, D. R. Nature 352, 708–709 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Gilmour, I. et al. Science 258, 1624–1626 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Ozima, M., Zashu, S., Tomura, K. & Matsuhisa, Y. Nature 351, 472–474 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Smith, J. V. & Dawson, J. B. Geology 13, 342–343 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Rost, R., Dolgov, Y. A. & Vishnevskiy, S. A. Dokl. Acad. Nauk. USSR 241, 165–168 (1978).

    Google Scholar 

  10. Koeberl, C. et al. Lunar planet. Sci. 26, 777–778 (1995).

    ADS  Google Scholar 

  11. El Goresy, A. & Donnay, G. Science 161, 363–364 (1968).

    Article  ADS  CAS  Google Scholar 

  12. Pillinger, C. T. Phil. Trans. R. Soc. Lond. A 343, 73–86 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Anders, E. & Zinner, E. Meteoritics 28, 490–514 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Hough, R. M., Wright, l. P., Pillinger, C. T. & Gilmour, I. Lunar planet. Sci. 26, 629–630 (1995).

    ADS  Google Scholar 

  15. Craig, H. Geochim. cosmochim. Acta 12, 133–149 (1957).

    Article  ADS  CAS  Google Scholar 

  16. Swart, P. K., Grady, M. M. & Pillinger, C. T. Meteoritics 18, 137–154 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Russell, S. S. & Pillinger, C. T. J. chem. Soc., Faraday Trans. 89, 2297–2304 (1993).

    Article  Google Scholar 

  18. Yagi, T., Utsumi, W., Yamakata, M., Kikegawa, T. & Shimomura, O. Phys. Rev. B46, 6031–6039 (1992).

    Article  CAS  Google Scholar 

  19. Berger, S. D., Mckenzie, D. R. & Martin, P. J. Phil. Mag. Lett. 57, 285–290 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Masaitis, V. L. Regionalaia Geologia i Metallogenia 1, 121–134 (1993).

    Google Scholar 

  21. Heimann, R. B. & Kleiman, J. in Crystals: Growth, Properties and Applications (ed. Freyhardt, H. C.) 1–76 (Springer, Berlin, 1988).

    Google Scholar 

  22. Sato, Y. & Kamo, M. in The Properties of Natural and Synthetic Diamond (ed. Field, J. E.) 423–469 (Academic, London, 1992).

    Google Scholar 

  23. Varshavskii, A. V. & Shul'pyakov, Y. F. Soviet Phys. Dokl. 12, 202–204 (1967).

    ADS  Google Scholar 

  24. Yamada, K. & Tobisawa, S. Phil. Mag. A61, 943–954 (1990).

    Article  CAS  Google Scholar 

  25. Kalnin, A. A., Neubert, F. & Pezoldt, J. Diamond Related Mater. 3, 346–352 (1994).

    Article  ADS  CAS  Google Scholar 

  26. von Engelhardt, W., Luft, E., Arndt, J., Schock, H. & Weiskirchner, W. Geochim. cosmochim. Acta 51, 1425–1443 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hough, R., Gilmour, I., Pillinger, C. et al. Diamond and silicon carbide in impact melt rock from the Ries impact crater. Nature 378, 41–44 (1995). https://doi.org/10.1038/378041a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378041a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing