Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mediation of PACAP–like neuropeptide transmission by coactivation of Ras/Raf and cAMP signal transduction pathways in Drosophila

Abstract

MUCH work on the signal transduction mechanisms underlying neurotransmission has been directed towards studying the roles of the cyclic AMP and phosphoinositide pathways1–3. Upon ligand binding, the transmitter receptors interact with heterotrimeric G proteins, allowing Gα and Gβγ subunits to disengage2,3. The free Gα then modulates the activity of adenylyl cyclase and phospholipase C1–3. It has been suggested that the Gβγ complex which is activated through muscarinic or neuropeptide receptors can stimulate mitogen-activated protein kinase (MAPK) via activation of the small guanine-nucleotide-binding protein Ras4,5. Sequential activation of the intermediates in the Ras/Raf serine–threonine protein kinase/MAPK kinase/MAPK/transcription factor pathway has emerged as a central mechanism for controlling cell proliferation and differentiation in yeast, worms, fruitflies and mammals6–11. Here we show, by analysis of Drosophila mutants, that synaptic current and modulation of K+ current, triggered by a pituitary adenylyl cyclase-activating polypeptide-like neuropeptide12, are mediated by coactivation of the Ras/Raf and Ruta-aga–adenylyl cyclase pathways. Thus the Ras/Raf pathway also appears to be essential for G-protein-coupled neurotransmission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nicoll, R. A. Science 241, 545–551 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Exton, J. H. A. Rev. Physiol. 56, 349–369 (1994).

    Article  CAS  Google Scholar 

  3. Neer, E. J. Cell 80, 249–257 (1995).

    Article  CAS  Google Scholar 

  4. Crespo, P., Xu, N., Simonds, W. F. & Gutkind, J. S. Nature 369, 418–420 (1994).

    Article  ADS  CAS  Google Scholar 

  5. van Corven, E. J., Hordijk, P. L., Medema, R. H., Bos, J. L. & Moolenaar, W. H. Proc. natn. Acad. Sci. U.S.A. 90, 1257–1261 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Egan, S. E. & Weinberg, R. A. Nature 365, 781–783 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Marshall, C. J. Cell 80, 179–185 (1995).

    Article  CAS  Google Scholar 

  8. Herskowitz, I. Cell 80, 187–197 (1995).

    Article  CAS  Google Scholar 

  9. Horvitz, H. R. & Sternberg, P. W. Nature 351, 535–541 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Zipursky, S. L. & Rubin, G. M. A. Rev. Neurosci. 17, 373–397 (1994).

    Article  CAS  Google Scholar 

  11. Perrimon, N. Cell 74, 219–222 (1993).

    Article  CAS  Google Scholar 

  12. Zhong, Y. & Pena, L. Neuron 14, 527–536 (1995).

    Article  CAS  Google Scholar 

  13. Arimura, A. Regul. Peptides 37, 287–303 (1992).

    CAS  Google Scholar 

  14. Hille, B. Ion Channels of Excitable Membranes (Sinauer, Sunderland, MA. 1992).

    Google Scholar 

  15. Spengler, D. et al. Nature 365, 170–175 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Livingstone, M. S., Sziober, P. P. & Quinn, W. G. Cell 37, 205–215 (1984).

    Article  CAS  Google Scholar 

  17. Levin, L. R. et al. Cell 68, 479–489 (1992).

    Article  CAS  Google Scholar 

  18. Han, P.-L., Levin, L. R., Reed, R. R. & Davis, R. L. Neuron 9, 619–627 (1992).

    Article  CAS  Google Scholar 

  19. Neuman-Silberberg, F. S., Schejter, E., Hoffmann, F. M. & Shilo, B. Z. Cell 37, 1027–1033 (1984).

    Article  CAS  Google Scholar 

  20. Simon, M. A. et al. Cell 67, 701–716 (1991).

    Article  CAS  Google Scholar 

  21. Yatani, A. et al. Cell 61, 769–776 (1991).

    Article  Google Scholar 

  22. Dickson, B., Sprenger, F., Morrison, D. & Hafen, E. Nature 360, 600–603 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Rodriguez-Viciana, P. et al. Nature 370, 527–532 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Martin, G. A. et al. Science 255, 192–194 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Gaul, U., Mardon, G. & Rubin, G. M. Cell 68, 1007–1019 (1992).

    Article  CAS  Google Scholar 

  26. Brand, A. H. & Perrimon, N. Genes Dev. 8, 629–639 (1994).

    Article  CAS  Google Scholar 

  27. Zhao, M.-L., Sable, E. O., Iverson, L. E. & Wu, C.-F. J. Neurosci. 15, 1406–1418 (1995).

    Article  CAS  Google Scholar 

  28. Zhong, Y. & Wu, C.-F. J. Neurogenet. 9, 15–27 (1993).

    Article  CAS  Google Scholar 

  29. Stewart, B. A., Atwood, H. L., Renger, J. J., Wang, J. & Wu, C.-F. J. comp. Physiol. A175, 179–191 (1994).

    Article  CAS  Google Scholar 

  30. Jan, L. Y. & Jan, Y. N. J. Physiol, Land. 262, 189–214 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, Y. Mediation of PACAP–like neuropeptide transmission by coactivation of Ras/Raf and cAMP signal transduction pathways in Drosophila. Nature 375, 588–592 (1995). https://doi.org/10.1038/375588a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375588a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing