Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Adaptive eradication of methionine and cysteine from cyanobacterial light-harvesting proteins

Abstract

SULPHUR is unique among the main elements of living cells in that it is covalently bound to biopolymers but does not occur in the biopolymer backbone. Indeed, most of the bacterial sulphur content resides in the methionine and cysteine side-chains of proteins1. The growth yield of an organism under conditions of sulphur limitation could therefore be greatly enhanced by mutations that substitute Met and Cys in the organism's proteins for sulphur-free amino acids. Because the saving in sulphur would increase with such accumulating mutations, Met and Cys changes could be progressively selected. Abundant proteins should be the prime targets of such a selection. A few published observations give credence to this scenario. Sulphate permease, which is abundantly produced by sulphur-starved Salmonella typhimurium, lacks Met and Cys residues2. Also, two species of marine purple bacteria synthesize more protein than can be expected from a limited sulphate supply3. We now report that the cyanobacterium Calothrix sp. PCC 7601 (referred to here as Calothrix) encodes sulphur-depleted versions of its most abundant proteins—phycocyanin and its auxiliary polypeptides—which it specifically expresses under conditions of sulphur limitation. Although these proteins do not take part in the fixation of sulphur, their elevated synthesis affects the sulphur budget of cyanobacterial cells. Direct evidence is thus provided that the structure of macro molecules can be subject to metabolic optimization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Roberts, R. B., Cowie, D. B., Abelson, P. H., Bolton, E. T. & Britten, R. V. Studies of Biosynthesis in Escherichia coli Publ. 607 (Carnegie Institute of Washington, Washington, D.C. 1955).

    Google Scholar 

  2. Pardee, A. B. J. biol. Chem. 241, 5886–5892 (1966).

    CAS  PubMed  Google Scholar 

  3. Cuhel, R. L., Taylor, C. D. & Jannasch, H. W. Arch. Mikrobiol. 130, 1–7 (1981).

    Article  CAS  Google Scholar 

  4. Stanier, R. Y., Ingraham, J. L., Wheelis, M. L. & Painter, P. R. The Microbial World, 5th edn (Prentice-Hall, Englewood Cliffs 1986).

    Google Scholar 

  5. Tandeau de Marsac, N. Bull. Inst. Pasteur 81, 201–254 (1983).

    CAS  Google Scholar 

  6. Glazer, A. N. J. biol. Chem. 264, 1–4 (1989).

    CAS  PubMed  Google Scholar 

  7. Schirmer, T., Bode, W., Huber, R., Sidler, W. & Zuber, H. J. molec. Biol. 184, 257–277 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. Tandeau de Marsac, N. et al. Photosyn. Res. 18, 99–132 (1988).

    Article  Google Scholar 

  9. Mazel, D., Houmard, J. & Tandeau de Marsac, N. Molec. Gen. Genet. 211, 296–304 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. J. gen. Microbiol. 111, 1–61 (1979).

    Google Scholar 

  11. Klotz, A. V. & Glazer, A. N. J. biol. Chem. 262, 17350–17355 (1987).

    CAS  PubMed  Google Scholar 

  12. Tsunasawa, S., Stewart, J. W. & Sherman, F. J. biol. Chem. 260, 5382–5391 (1985).

    CAS  PubMed  Google Scholar 

  13. Sidler, W., Kumpf, B., Rüdiger, W. & Zuber, H. Biol. Chem. Hoppe-Seyler 367, 627–642 (1986).

    Article  CAS  PubMed  Google Scholar 

  14. Bachmair, A., Finley, D. & Varshavsky, A. Science 234, 179–186 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Woese, C. R. Microbiol. Rev. 51, 221–271 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Giovannoni, S. J. et al. J. Bacteriol. 170, 3584–3592 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Allen, M. B. Arch. Mikrobiol. 32, 270–277 (1959).

    Article  CAS  PubMed  Google Scholar 

  18. Binder, V. A., Locher, P. & Zuber, H. Arch. Hydrobiol. 70, 541–555 (1972).

    Google Scholar 

  19. Creighton, T. E. Proteins: Structures and Molecular Properties. (Freeman, New York 1983).

    Google Scholar 

  20. Bachofen, R. Experientia 42, 1179–1181 (1981).

    Article  Google Scholar 

  21. Frank, G., Sidler, W., Widmer, H. & Zuber, H. Hoppe-Seyler's Z. physiol. Chem. 359, 1491–1507 (1978).

    Article  CAS  Google Scholar 

  22. Glazer, A. N. Biochim. biophys. Acta 768, 29–51 (1984).

    Article  CAS  Google Scholar 

  23. Belknap, W. R. & Haselkorn, R. EMBO J. 6, 871–884 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Offner, G. D. & Troxler, R. F. J. biol. Chem. 258, 9931–9940 (1983).

    CAS  PubMed  Google Scholar 

  25. de Lorimier, R. et al. Proc. natl. Acad. Sci. USA 81, 7946–7950 (1984).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mazel, D. et al. Nucleic Acids Res. 14, 8279–8290 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Houmard, J., Capuano, V., Coursin, T. & Tandeau de Marsac, N. J. Bacteriol. 170, 5512–5521 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matsudaira, P. J. biol. Chem. 262, 10035–10038 (1987).

    CAS  PubMed  Google Scholar 

  29. Guglielmi, G. & Cohen-Bazire, G. Protistologica 20, 393–413 (1984).

    CAS  Google Scholar 

  30. Tandeau de Marsac, N. & Houmard, J. Meth. Enzym. 167, 318–328 (1988).

    Article  CAS  Google Scholar 

  31. Gross, E. Meth. Enzym. 11, 251–253 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazel, D., Marlière, P. Adaptive eradication of methionine and cysteine from cyanobacterial light-harvesting proteins. Nature 341, 245–248 (1989). https://doi.org/10.1038/341245a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341245a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing