Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Heat shock factor is regulated differently in yeast and HeLa cells

Abstract

When cells are exposed to elevated temperatures, transcription of a small set of genes, the heat-shock genes, is activated1–5. This response is mediated by a short DNA sequence, the heat-shock element (HSE)5–7, which is thought to be the binding site for a specific transcription factor8–12. Studies with Drosophila show that this protein binds to HSEs only in heat-shocked cells, suggesting that changes in factor binding are responsible for gene activation10. We have investigated the properties of HSE-binding proteins from yeast and HeLa cells. In HeLa cells, binding activity is present only after heat shock. In contrast, control and heat-shocked yeast cells yield the same amount of HSE-binding activity; however, the mobility of protein-HSE complexes on polyacrylamide gels is altered following heat shock. This mobility difference can be significantly reduced by treatment of crude extracts with phosphatase. We propose that the yeast heat-shock factor binds constitutively to DNA but only activates transcription after heat-induced phosphorylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nover, L. (ed.) Heat shock response of eukaryotic cells (Springer, Berlin, 1984).

  2. Craig, E. A. CRC Crit. Rev. Biochem. 18, 239–280 (1985).

    Article  CAS  Google Scholar 

  3. Lindquist, S. A. Rev. Biochem. 55, 1151–1191 (1986).

    Article  CAS  Google Scholar 

  4. Pelham, H. R. B. Trends Genet. 1, 31–35 (1985).

    Article  CAS  Google Scholar 

  5. Bienz, M. & Pelham, H. R. B. in Advances in Genetics (in the press).

  6. Pelham, H. R. B. Cell 30, 517–528 (1982).

    Article  CAS  Google Scholar 

  7. Pelham, H. R. B. & Bienz, M. EMBO J. 1, 1473–1477 (1982).

    Article  CAS  Google Scholar 

  8. Parker, C. S. & Topol, J. Cell 37, 273–283 (1984).

    Article  CAS  Google Scholar 

  9. Wiederrecht, G., Shuey, D. J., Kibbe, W. A. & Parker, C. S. Cell 48, 507–515 (1987).

    Article  CAS  Google Scholar 

  10. Wu, C. Nature 309, 229–234 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Wu, C. Nature 311, 81–84 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Sorger, P. K. & Pelham, H. R. B. EMBO J. (in the press).

  13. Berger, E. M., Torrey, D. & Morganelli, C. Somat. Cell molec. Genet. 12, 433–440 (1986).

    Article  CAS  Google Scholar 

  14. Fried, M. & Crothers, D. M. Nucleic Acids Res. 9, 6505–6525 (1981).

    Article  CAS  Google Scholar 

  15. Garner, M. M. & Revzin, A. Nucleic Acids Res. 9, 3047–3060 (1981).

    Article  CAS  Google Scholar 

  16. Kingston, R. E., Schuetz, T. J. & Larin, Z. Molec. cell. Biol. 7, 1530–1534 (1987).

    Article  CAS  Google Scholar 

  17. Slater, M. R. & Craig, E. A. Molec. cell. Biol. 7, 1906–1916 (1987).

    Article  CAS  Google Scholar 

  18. Sen, R. & Baltimore, D. Cell 47, 921–928 (1986).

    Article  CAS  Google Scholar 

  19. Seguin, C. & Hamer, D. H. Science 235, 1383–1387 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Treisman, R. Cell 46, 567–574 (1986).

    Article  CAS  Google Scholar 

  21. Gilman, M. Z., Wilson, R. N. & Weinberg, R. A. Molec. cell. Biol. 6, 4305–4316 (1986).

    Article  CAS  Google Scholar 

  22. Dignam, J. D., Lebowitz, R. M. & Roeder, R. G. Nucleic. Acids Res. 11, 1475–1489 (1983).

    Article  CAS  Google Scholar 

  23. Breeden, L. & Nasmyth, K. Cell 48, 389–397 (1987).

    Article  CAS  Google Scholar 

  24. Guarente, L. & Mason, T. Cell 32, 1279–1286 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorger, P., Lewis, M. & Pelham, H. Heat shock factor is regulated differently in yeast and HeLa cells. Nature 329, 81–84 (1987). https://doi.org/10.1038/329081a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/329081a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing