Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Predicted structure of the sugar-binding site of the lac repressor

Abstract

The lactose repressor protein from Escherichia coli binds sugars, primarily galactosides, which modulate its interactions with operator DNA and thereby affect synthesis of the lac metabolic enzymes1. The affinity of the repressor for operator DNA is decreased by binding inducer sugars and increased by binding anti-inducer sugars2. Based on regions of the primary structure implicated by genetic methods to be involved in sugar binding3–5, amino acid sequence homology between L-arabinose-binding protein (ABP) and lac repressor has recently been reported6. The sugar-binding sites for these two proteins might be expected to have similar structural features, as both bind L-arabinose and D-galactose. The high resolution structure of ABP reported in the accompanying article7 provides complete definition of amino acids in the sugar-binding site. By identification of homologous residues in the lac repressor, we have now predicted the structure of the portion of the repressor sugar-binding site which accommodates the galactosyl moiety. This prediction provides the first potential view of the inducer/anti-inducer site in the repressor protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Miller, J. H. & Reznikoff, W. S. The Operon (Cold Spring Harbor Laboratory, New York, 1979).

    Google Scholar 

  2. Barkley, M. D., Riggs, A. D., Jobe, A. & Bourgeois, S. Biochemistry 14, 1700–1712 (1975).

    Article  CAS  Google Scholar 

  3. Pfahl, M., Stockter, C. & Gronenborn, B. Genetics 76, 669–679 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Miller, J. H. J. molec. Biol. 131, 249–258 (1979).

    Article  CAS  Google Scholar 

  5. Müller-Hill, B., Gronenborn, B., Kania, J., Schlotmann, M. & Beyreuther, K. in Nucleic Acid-Protein Recognition (ed. Vogel, H. J.) 219–236 (Academic, New York, 1977).

    Book  Google Scholar 

  6. Müller-Hill, B. Nature 302, 163–164 (1983).

    Article  ADS  Google Scholar 

  7. Quiocho, F. A. & Vyas, N. K. Nature 310, 381–386 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Newcomer, M. E., Gilliland, G. L. & Quiocho, F. A. J. biol. Chem. 256, 13213–13217 (1981).

    CAS  PubMed  Google Scholar 

  9. Platt, T., Files, J. G. & Weber, K. J. biol. Chem. 248, 110–121 (1973).

    CAS  PubMed  Google Scholar 

  10. Matthews, K. S. J. biol. Chem. 254, 3348–3353 (1979).

    CAS  PubMed  Google Scholar 

  11. Miller, J. H. et al. J. molec. Biol. 131, 191–222 (1979).

    Article  CAS  Google Scholar 

  12. Müller-Hill, B., Rickenberg, H. V. & Wallenfels, K. J. molec. Biol. 10, 303–318 (1964).

    Article  Google Scholar 

  13. Newcomer, M. E., Lewis, B. A. & Quiocho, F. A. J. biol. Chem. 256, 13218–13222 (1981).

    CAS  PubMed  Google Scholar 

  14. Matthews, K. S. Biochim. biophys. Acta 359, 334–340 (1974).

    Article  CAS  Google Scholar 

  15. Laiken, S. L., Gross, C. A. & von Hippel, P. H. J. molec. Biol. 66, 143–155 (1972).

    Article  CAS  Google Scholar 

  16. Yang, D. S., Burgum, A. A. & Matthews, K. S. Biochim. biophys. Acta 493, 24–36 (1977).

    Article  CAS  Google Scholar 

  17. Alexander, M. E., Burgum, A. A., Noall, R. A., Shaw, M. D. & Matthews, K. S. Biochim. biophys. Acta 493, 367–379 (1977).

    Article  CAS  Google Scholar 

  18. O'Gorman, R. B. & Matthews, K. S. J. biol. Chem. 252, 3565–3571 (1977).

    CAS  PubMed  Google Scholar 

  19. Boschelli, F., Jarema, M. A. C. & Lu, P. J. biol. Chem. 256, 11595–11599 (1981).

    CAS  PubMed  Google Scholar 

  20. Jarema, M. A. C., Lu, P. & Miller, J. H. Proc. natn. Acad. Sci. U.S.A. 78, 2707–2711 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Fries, D. C., Rao, S. T. & Sundaralingam, M. Acta crystallogr. B27, 994–1005 (1971).

    Article  CAS  Google Scholar 

  22. Kanters, J. A., Roelofsen, G., Doesburg, H. M. & Koops, T. Acta crystallogr. B32, 2830–2837 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sams, C., Vyas, N., Quiocho, F. et al. Predicted structure of the sugar-binding site of the lac repressor. Nature 310, 429–430 (1984). https://doi.org/10.1038/310429a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310429a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing