Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA sequences at the ends of transposon Tn5 required for transposition

Abstract

Transposons are a class of genetic elements that can move from one site in a cell's genome to another independently of the cell's general recombination system. Little is known about the mechanism of transposition of compound transposons such as Tn5, but it is thought that a transposon-encoded protein (a transposase) must recognize the outer ends of the element and, together with host factors, catalyse the transfer of the internal DNA into a new site in a manner that may involve replication. It has previously been shown that the synthesis of an IS50R-encoded protein (protein 1) is an essential requirement for Tn5 transposition1–5. Here we demonstrate that a structure containing only the outer 186 base pairs (bp) of both inverted repeats is capable of being efficiently complemented to transpose in Escherichia coli, provided IS50R is located close by on the same replicon. In addition, Bal31-generated deletions indicate that 16–18 bp of the outer end of IS50L are required for transposition. This 16–18-bp sequence contains the 8-9-bp small inverted repeat present at each end of IS50 plus a 9–bp sequence which is homologous to an interrelated sequence present in four copies in the chromosomal origin of replication in a variety of Gram-negative bacteria. This sequence organization suggests that the ends of Tn5 may function to provide a recognition site for the Tn5 transposase adjacent to a sequence recognized by the host replication system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rothstein, S.J., Jorgensen, R. A., Postle, K. & Reznikoff, W.S. Cell 19, 795–805 (1980).

    Article  CAS  Google Scholar 

  2. Isberg, R. R., Lazaar, A. L. & Syvanen, M. Cell 30, 883–892 (1982).

    Article  CAS  Google Scholar 

  3. Johnson, R. C., Yin, J. C.-P. & Reznikoff, W.S. Cell 30, 873–882 (1982).

    Article  CAS  Google Scholar 

  4. Isberg, R. R. & Syvanen, M. J. molec. Biol. 150, 15–32 (1981).

    Article  CAS  Google Scholar 

  5. Rothstein, S. J. et al. Cold Spring Harb. Symp. quant. Biol. 45, 99–105 (1981).

    Article  CAS  Google Scholar 

  6. Berg, D. E., Davies, J., Allet, B. & Rochaix, J. D. Proc. natn. Acad. Sci. U.S.A. 72, 3628–3632 (1975).

    Article  ADS  CAS  Google Scholar 

  7. Jorgensen, R. A., Rothstein, S. J. & Reznikoff, W.S. Molec. gen. Genet. 177, 6047–6051 (1979).

    Article  Google Scholar 

  8. Auerswald, E. A., Ludwig, G. S. & Schaller, H. Cold Spring Harb. Symp. quant. Biol. 45, 107–114 (1981).

    Article  CAS  Google Scholar 

  9. Berg, D. E., Johnsrud, L., McDivitt, L., Ramabhadran, R. & Hirschel, B. J. Proc. natn. Acad. Sci. U.S.A. 79, 2632–2635 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Foster, T., Davis, M. A., Takeshita, K., Roberts, D. E. & Kleckner, N. Cell 23, 201–213 (1981).

    Article  CAS  Google Scholar 

  11. Grindley, N.D.F. & Joyce, C.M. Cold Spring Harb. Symp. quant. Biol. 45, 125–132 (1981).

    Article  CAS  Google Scholar 

  12. Machida, Y., Machida, C., Ohtsubo, H. & Ohtsubo, E. Proc. natn. Acad. Sci. U.S.A. 79, 277–281 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Morisato, D., Way, J. C., Kim, H-H. & Kleckner, N. Cell 32, 799–807 (1983).

    Article  CAS  Google Scholar 

  14. Zyskind, J. W., Harding, N. E., Takeda, Y., Cleary, J. M. & Smith, D. W. ICN-UCLA Symp. molec. cell. Biol. 22, 13–25 (1981).

    CAS  Google Scholar 

  15. Zyskind, J. W., Cleary, J. M., Brusilow, W. S. A., Harding, N. E. & Smith, D. W. Proc. natn. Acad. Sci. U.S.A. 80, 1164–1168 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Chandler, M. & Galas, D.J. J. molec. Biol. (in the press).

  17. Hirschel, B. J., Galas, D.J. & Chandler, M. Proc. natn. Acad. Sci. U.S.A. 79, 4530–4534 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Berg, D. E. Proc. natn. Acad. Sci. U.S.A. 80, 792–796 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Maxam, A., & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  20. Hirota, Y., Oka, A., Sugimoto, K., Asada, K., Sasuki, H. & Takanami, M. ICN-UCLA Symp. molec. cell. Biol. 22, 1–12 (1981).

    CAS  Google Scholar 

  21. Sasakawa, C. & Berg, D. E. J. molec. Biol. 159, 257–271 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, R., Reznikoff, W. DNA sequences at the ends of transposon Tn5 required for transposition. Nature 304, 280–282 (1983). https://doi.org/10.1038/304280a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/304280a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing