Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Elasticity and rheology of iron above 220 GPa and the nature of the Earth's inner core

A Corrigendum to this article was published on 20 May 1999

Abstract

Recent numerical-modelling and seismological results have raised new questions about the dynamics1,2 and magnetism3,4 of the Earth's core. Knowledge of the elasticity and texture of iron5,6 at core pressures is crucial for understanding the seismological observations, such as the low attenuation of seismic waves, thelow shear-wave velocity7,8 and the anisotropy of compressional-wave velocity9,10,11. The density and bulk modulus of hexagonal-close-packed iron have been previously measured to core pressures by static12 and dynamic13,14 methods. Here we study,using radial X-ray diffraction15 and ultrasonic techniques16, the shear modulus, single-crystal elasticity tensor, aggregate compressional- and shear-wave velocities, and orientation dependence of these velocities in iron. The inner core shear-wave velocity is lower than the aggregate shear-wave velocity of iron, suggesting the presence of low-velocity components or anelastic effects in the core. Observation of a strong lattice strain anisotropy in iron samples indicates a large (24%) compressional-wave anisotropy under the isostress assumption, and therefore a perfect alignment of crystals6 would not be needed to explain the seismic observations. Alternatively the strain anisotropy may indicate stress variation due to preferred slip systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lattice strains of diamond-cell samples under uniaxial stress (σ1 and σ3) are obtained with radial X-ray diffraction (RXD) through a beryllium gasket.
Figure 2: Comparison of our results with theoretical and shock-wave studies, and with seismic observations25 in the inner core (crosses).
Figure 3: The measured Q ( hkl) of h.c.p. Fe at 211 GPa.
Figure 4: Comparison of seismic-wave velocities from this work with values calculated from theory.

Similar content being viewed by others

References

  1. Song, X. & Richards, P. G. Seismological evidence for differential rotation of the Earth's inner core. Nature 382, 221–224 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Su, W., Dziewonski, A. M. & Jeanloz, R. Planet within a planet: rotation of the inner core of Earth. Science 274, 1883–1887 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Glatzmaier, G. A. & Roberts, P. H. Rotation and magnetism of Earth's inner core. Science 274, 1887–1891 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Kuang, W. & Bloxham, J. An Earth-like numerical dynamo model. Nature 389, 371–374 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Jephcoat, A. & Olson, P. Is the inner core of the Earth pure iron? Nature 325, 332–335 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Stixrude, L. & Cohen, R. E. High-pressure elasticity of iron and anisotropy of Earth's inner core. Science 267, 1972–1975 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Dziewonski, A. M. & Gilbert, F. Solidity of the inner core of the Earth inferred from normal mode observations. Nature 234, 465–466 (1971).

    Article  ADS  Google Scholar 

  8. Masters, G. & Gilbert, F. Structure of the inner core inferred from observations of its spheroidal shear modes. Geophys. Res. Lett. 8, 569–571 (1981).

    Article  ADS  Google Scholar 

  9. Shearer, P. M., Toy, K. M. & Orcutt, J. A. Axi-symmetric Earth models and inner-core anisotropy. Nature 333, 228–232 (1988).

    Article  ADS  Google Scholar 

  10. Creager, K. C. Anisotropy of the inner core from differential travel times of the phases PKP and PKIKP. Nature 356, 309–314 (1992).

    Article  ADS  Google Scholar 

  11. Tromp, J. Support for anisotropy of the Earth's inner core from free oscillations. Nature 366, 678–681 (1993).

    Article  ADS  Google Scholar 

  12. Mao, H. K., Wu, Y., Chen, L. C., Shu, J. F. & Jephcoat, A. P. Static compression of iron to 300 GPa and Fe0.8Ni0.2alloy to 260 GPa: Implications for composition of the core. J. Geophys. Res. 95, 21737–21742 (1990).

    Article  ADS  Google Scholar 

  13. Brown, J. M. & McQueen, R. G. Phase-transitions, Grüneisen-parameter, and elasticity for shocked iron between 77 GPa and 400 GPa. J. Geophys. Res. 91, 7485–7494 (1986).

    Article  ADS  Google Scholar 

  14. Duffy, T. S. & Ahrens, T. J. in High Pressure Research: Application to Earth and Planetary Sciences(eds Syono, Y. & Manghnani, M. H.) 353–361 (Terra Scientific Publishing, Tokyo, 1992).

    Google Scholar 

  15. Singh, A. K., Mao, H. K., Shu, J. & Hemley, R. J. Estimation of single-crystal elastic moduli from polycrystalline x-ray diffraction at high pressure: Applications to FeO and iron. Phys. Rev. Lett. 80, 2157–2160 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Li, B., Jackson, I., Gasparik, T. & Liebermann, R. C. Elastic wave velocity measurement in multi-anvil apparatus to 10 GPa using ultrasonic interferometry. Phys. Earth Planet. Inter. 98, 79–91 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Hemley, R. J. et al. X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures. Science 276, 1242–1245 (1997).

    Article  CAS  Google Scholar 

  18. Singh, A. K. & Balasingh, C. The lattice strains in a specimen (hexagonal system) compressed nonhydrostatically in an opposed anvil high pressure setup. J. Appl. Phys. 75, 4956–4962 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Uchida, T., Funamori, N. & Yagi, T. Lattice strains in crystals under uniaxial stress field. J. Appl. Phys. 80, 739–746 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Anderson, O. L., Isaak, D. G. & Yamamoto, S. Anharmonicity and the equation of state for gold. J.Appl. Phys. 65, 1534–1543 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Jephcoat, A. P., Mao, H. K. & Bell, P. M. The static compression of iron to 78 GPa with rare gas solids as pressure-transmitting media. J. Geophys. Res. B 91, 4677–4684 (1986).

    Article  ADS  CAS  Google Scholar 

  22. Simmons, G. & Wang, H. Single Crystal Elastic Constants and Calculated Aggregate Properties(MIT Press, Cambridge, MA, 1971).

    Google Scholar 

  23. Guinan, M. W. & Steinberg, D. J. Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements. J. Phys. Chem. Solids 35, 1501–1512 (1974).

    Article  ADS  CAS  Google Scholar 

  24. Söderlind, P., Moriarty, J. A. & Wills, J. M. First-principles theory of iron up to earth-core pressures: Structural, vibrational, and elastic properties. Phys. Rev. B 53, 14063–14072 (1996).

    Article  ADS  Google Scholar 

  25. Dziewonski, A. & Anderson, D. L. Preliminary reference earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article  ADS  Google Scholar 

  26. Tallon, J. The volume dependence of elastic moduli and the Born–Durand melting hypothesis. Phil. Mag. 39, 151–161 (1979).

    Article  CAS  Google Scholar 

  27. Singh, A. K., Balasingh, C., Mao, H. K., Hemley, R. J. & Shu, J. Analysis of lattice strains measured under non-hydrostatic pressure. J. Appl. Phys. 83, 7567–7575 (1998).

    Article  ADS  CAS  Google Scholar 

  28. Wenk, H. R., Takeshita, T. & Jeanloz, R. Development of texture and elastic anisotropy during deformation of hcp metals. Geophys. Res. Lett. 15, 76–79 (1988).

    Article  ADS  CAS  Google Scholar 

  29. Romanowicz, B., Li, X. D. & Durek, J. Anisotropy in the inner core: could it be due to low-order convection? Science 274, 963–966 (1996).

    Article  ADS  CAS  Google Scholar 

  30. Stacey, F. D. Theory of thermal and elastic properties of the lower mantle and core. Phys. Earth Planet. Inter. 89, 219–245 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Hu for technical help, L. Stixrude and R. E. Cohen for sharing theoretical data and discussions, T. Duffy for comments, and NSLS and APS for synchrotron beam time; the synchrotron facilities are supported by the DOE. This work was supported by the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-kwang Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, Hk., Shu, J., Shen, G. et al. Elasticity and rheology of iron above 220 GPa and the nature of the Earth's inner core. Nature 396, 741–743 (1998). https://doi.org/10.1038/25506

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/25506

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing