Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1

Abstract

Cohesion between sister chromatids is established during DNA replication and depends on a multiprotein complex called cohesin. Attachment of sister kinetochores to the mitotic spindle during mitosis generates forces that would immediately split sister chromatids were it not opposed by cohesion. Cohesion is essential for the alignment of chromosomes in metaphase but must be abolished for sister separation to start during anaphase. In the budding yeast Saccharomyces cerevisiae, loss of sister-chromatid cohesion depends on a separating protein (separin) called Esp1 and is accompanied by dissociation from the chromosomes of the cohesion subunit Scc1. Here we show that Esp1 causes the dissociation of Scc1 from chromosomes by stimulating its cleavage by proteolysis. A mutant Scc1 is described that is resistant to Esp1-dependent cleavage and which blocks both sister-chromatid separation and the dissociation of Scc1 from chromosomes. The evolutionary conservation of separins indicates that the proteolytic cleavage of cohesion proteins might be a general mechanism for triggering anaphase.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Esp1-dependent chromosome association of Scc1 in G1.
Figure 2: In vitro assay for Scc1 dissociation from chromatin.
Figure 3: Scc1p cleavage at anaphase onset in vivo.
Figure 4: Characterization of the Scc1 cleavage sites.
Figure 5: Expression of non-cleavable Scc1 prevents sister chromatid separation.
Figure 6: Scc1RR-DD is a functional Scc1 variant.
Figure 7: Model for separin action on cohesin, and conservation of potential cohesin cleavage sites.

Similar content being viewed by others

References

  1. Gimenez-Abian, J. F., Clarke, D. J., Mullinger, A. M., Downes, C. S. & Johnson, R. T. Apostprophase topoisomerase II-dependent chromatid core separation step in the formation of metaphase chromosomes. J. Cell. Biol. 131, 7–17 (1995).

    Article  CAS  Google Scholar 

  2. Losada, A., Hirano, M. & Hirano, T. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev. 12, 1003–1012 (1998).

    Article  Google Scholar 

  3. Nicklas, R. B. The forces that move chromosomes in mitosis. Annu. Rev. Biophys. Chem. 17, 431–449 (1988).

    Article  CAS  Google Scholar 

  4. Miyazaki, W. Y. & Orr-Weaver, T. L. Sister chromatid cohesion in mitosis and meiosis. Annu. Rev. Genet. 28, 167–187 (1994).

    Article  CAS  Google Scholar 

  5. Rieder, C. L. & Salmon, E. D. The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol. 8, 310–318 (1998).

    Article  CAS  Google Scholar 

  6. Nasmyth, K. Separating sister chromatids. Trends Biochem. Sci. 24, 98–104 (1999).

    Article  CAS  Google Scholar 

  7. Michaelis, C., Ciosk, R. & Nasmyth, K. Cohesins: Chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35–45 (1997).

    Article  CAS  Google Scholar 

  8. Guacci, V., Koshland, D. & Strunnikov, A. Adirect link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91, 47–57 (1997).

    Article  CAS  Google Scholar 

  9. Toth, A. et al . Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev. 13, 320–333 (1999).

    Article  CAS  Google Scholar 

  10. Uhlmann, F. & Nasmyth, K. Cohesion between sister chromatids must be established during DNA replication. Curr. Biol. 8, 1095–1101 (1998).

    Article  CAS  Google Scholar 

  11. Skibbens, R. V., Corson, L. B., Koshland, D. & Hieter, P. Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery. Genes Dev. 13, 307–319 (1999).

    Article  CAS  Google Scholar 

  12. Ciosk, R. et al . An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93, 1067–1076 (1998).

    Article  CAS  Google Scholar 

  13. May, G. S., McGoldrick, C. A., Holt, C. L. & Denison, S. H. The bimB3 mutation of Aspergillus nidulans uncouples DNA replication from the completion of mitosis. J. Biol. Chem. 267, 15737–15743 (1992).

    CAS  PubMed  Google Scholar 

  14. Funabiki, H., Kumada, K. & Yanagida, M. Fission yeast Cut1 and Cut2 are essential for sister chromatid separation, concentrate along the metaphase spindle and form large complexes. EMBO J. 15, 6617–6628 (1996).

    Article  CAS  Google Scholar 

  15. Nagase, T., Seki, N., Ishikawa, K., Tanaka, A. & Nomura, N. Prediction of the coding sequences of unidentified human genes. V. The coding sequences of 40 new genes (KIAA0161–KIAA0200) deduced by analysis of cDNA clones from human cell line KG-1. DNA Res. 3, 17–24 (1996).

    Article  CAS  Google Scholar 

  16. Cohen-Fix, O., Peters, J.-M., Kirschner, M. W. & Koshland, D. Anaphase initiation in Saccharomyces cervisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev. 10, 3081–3093 (1996).

    Article  CAS  Google Scholar 

  17. Peters, J.-M. SCF and APC the Yin and Yan of cell cycle regulated proteolysis. Curr. Opin. Cell Biol. 10, 759–768 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Yamamoto, A., Guacci, V. & Koshland, D. Pds1p, an inhibitor of anaphase in budding yeast, plays a critical role in the APC and checkpoint pathway(s). J. Cell Biol. 133, 99–110 (1996).

    Article  CAS  Google Scholar 

  19. Liang, C. & Stillman, B. Persistent initiation of DNA replication and chromatin-bound MCM proteins during the cell cycle in cdc6 mutants. Genes Dev. 11, 3375–3386 (1997).

    Article  CAS  Google Scholar 

  20. Groigno, L. & Whitaker, M. An anaphase calcium signal controls chromosome disjunction in urchin embryos. Cell 92, 193–204 (1998).

    Article  CAS  Google Scholar 

  21. Lim, H. H., Goh, P.-Y. & Surana, U. Cdc20 is essential for the cyclosome-mediated proteolysis of both Pds1 and Clb2 during M phase in budding yeast. Curr. Biol. 8, 231–234 (1998).

    Article  CAS  Google Scholar 

  22. McGrew, J. T., Goetsch, L., Byers, B. & Baum, P. Requirement for ESP1 in the nuclear division of S.cerevisiae. Mol. Biol. Cell 3, 1443–1454 (1992).

    Article  CAS  Google Scholar 

  23. Rudner, A. D. & Murray, A. W. The spindle assembly checkpoint. Curr. Opin. Cell Biol. 8, 773–780 (1996).

    Article  CAS  Google Scholar 

  24. Amon, A. The spindle checkpoint. Curr. Opin. Gen. Dev. 9, 69–75 (1999).

    Article  CAS  Google Scholar 

  25. Funabiki, H. et al . Cut2 proteolysis required for sister-chromatid separation in fission yeast. Nature 381, 438–441 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Alexandru, G., Zachariae, W., Schleiffer, A. & Nasmyth, K. Sister chromatid separation and chromosome re-duplication are regulated by different mechanisms in response to spindle damage. EMBO J. 18, 2707–2721 (1999).

    Article  CAS  Google Scholar 

  27. Melby, T. E., Ciampaglio, C. N., Briscoe, G. & Erickson, H. P. The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long, antiparallel coiled coils, folded at a flexible hinge. J. Cell Biol. 142, 1595–1604 (1998).

    Article  CAS  Google Scholar 

  28. Akhmedov, A. T. et al . Structural maintenance of chromosomes protein C-terminal domains bind preferentially to DNA with secondary structure. J. Biol. Chem. 273, 24088–24093 (1998).

    Article  CAS  Google Scholar 

  29. Lin, Y., Larson, K. L., Dorer, R. & Smith, G. R. Meiotically induced rec7 and rec8 genes of Schizosaccharomyces pombe. Genetics 132, 75–85 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Molnar, M., Bahler, J., Sipicki, M. & Kohli, J. The rec8 gene of Schizosaccharomyces pombe is involved inlinear element formation, chromosome pairing and sister-chromatid cohesion during meiosis. Genetics 141, 61–73 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Birkenbihl, R. P. & Subramani, S. The rad21 gene product of Schizosaccharomyces pombe is a nuclear, cell cycle-regulated phosphoprotein. J. Biol. Chem. 270, 7703–7711 (1995).

    Article  CAS  Google Scholar 

  32. Uzawa, S., Samejima, I., Hirano, T., Tanaka, K. & Yanagida, M. The fission yeast cut1+ gene regulates spindle pole duplication and has homology to the budding yeast ESP1 gene. Cell 62, 913–925 (1990).

    Article  CAS  Google Scholar 

  33. Gietz, R. D. & Sugino, A. New yeast–Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six base pair restriction sites. Gene 74, 527–534 (1988).

    Article  CAS  Google Scholar 

  34. Rose, M. D., Winston, F. & Hieter, P. Laboratory Course Manual for Methods in Yeast Genetics (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, (1990).

    Google Scholar 

  35. Eckerskorn, C. & Lottspeich, F. Structural characterization of blotting membranes and the influence of membrane parameters for electroblotting and subsequent amino acid sequence analysis of proteins. Electrophoresis 14, 831–838 (1993).

    Article  CAS  Google Scholar 

  36. Eddy, S. R. Hidden Markov models. Curr. Opin. Struct. Biol. 6, 361–365 (1996).

    Article  CAS  Google Scholar 

  37. Kumada, K. et al . Cut1 is loaded onto the spindle by binding to Cut2 and promotes anaphase spindle movement upon Cut2 proteolysis. Curr. Biol. 8, 633–641 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Kramer for in vitro translated Pds1; K. Mechtler for antibody purification; L. Huber for rabbit anti-Myc antibody; T. Skern for discussion; R. Ciosk, C. Michaelis, A.Toth and W. Zachariae for discussion and for yeast strains; A. Schleiffer for database searches; H.Tkadletz for graphics; and M. Glotzer and J.-M. Peters for comments on the manuscript. F.U. acknowledges support from an EMBO long-term fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Nasmyth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhlmann, F., Lottspeich, F. & Nasmyth, K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400, 37–42 (1999). https://doi.org/10.1038/21831

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/21831

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing