Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ca2+/calmodulin binds to and modulates P/Q-type calcium channels

Abstract

Neurotransmitter release at many central synapses is initiated by an influx of calcium ions through P/Q-type calcium channels1,2, which are densely localized in nerve terminals3. Because neurotransmitter release is proportional to the fourth power of calcium concentration4,5, regulation of its entry can profoundly influence neurotransmission. N- and P/Q-type calcium channels are inhibited by G proteins6,7, and recent evidence indicates feedback regulation of P/Q-type channels by calcium8. Although calcium-dependent inactivation of L-type channels is well documented9,10,11, little is known about how calcium modulates P/Q-type channels. Here we report a calcium-dependent interaction between calmodulin and a novel site in the carboxy-terminal domain of the α1A subunit of P/Q-type channels. In the presence of low concentrations of intracellular calcium chelators, calcium influx through P/Q-type channels enhances channel inactivation, increases recovery from inactivation and produces a long-lasting facilitation of the calcium current. These effects are prevented by overexpression of a calmodulin-binding inhibitor peptide and by deletion of the calmodulin-binding domain. Our results reveal an unexpected association of Ca2+/calmodulin with P/Q-type calcium channels that may contribute to calcium-dependent synaptic plasticity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Calmodulin binding to the C-terminal domain of the α1A subunit.
Figure 2: Ca2+-dependent binding of calmodulin to α1A.
Figure 3: Effects of Ca2+ and calmodulin on inactivation of P/Q-type channels.
Figure 4: Effects of Ca2+ and calmodulin on recovery from inactivation.

Similar content being viewed by others

References

  1. Dunlap, K., Luebke, J. I. & Turner, T. J. Exocytotic Ca2+ channels in mammalian central neurons. Trends Neurosci. 18, 89–98 (1995).

    Article  CAS  Google Scholar 

  2. Tsien, R. W., Elinor, P. T. & Horne, W. A. Molecular diversity of voltage-dependent calcium channels. Trends Neurosci. 12, 349–354 (1991).

    CAS  Google Scholar 

  3. Westenbroek et al. Immunochemical identification and subcellular distribution of the α1A subunits of brain calcium channels. J. Neurosci. 15 6403–6418 (1995).

    Article  CAS  Google Scholar 

  4. Dodge, F. A. J & Rahamimoff, R. Co-operative action of calcium ions in transmitter release at the neuromuscular junction. J. Physiol. (Lond.) 193, 419–432 (1967).

    Article  CAS  Google Scholar 

  5. Mintz, I. M., Sabatini, B. L. & Regehr, W. G. Calcium control of transmitter release at a cerebellar synapse. Neuron 15, 675–688 (1995).

    Article  CAS  Google Scholar 

  6. Herlitze et al. Modulation of Ca2+ channels by G protein βγ subunits. Nature 380 258–262 1996.

    Article  ADS  CAS  Google Scholar 

  7. Ikeda, S. R. Voltage-dependent modulation of N-type calcium channels by G-protein βγ subunits. Nature 380, 255–258 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Forsythe, I. D., Tsujimoto, T., Barnes-Davies, M., Cuttle, M. F. & Takahashi, T. Inactivation of presynaptic calcium current contributes to synaptic depression at a fast central synapse. Neuron 20, 797–807 (1998).

    Article  CAS  Google Scholar 

  9. Neely, A., Olcese, R., Wei, X., Birnbaumer, L. & Stefani, E. Ca2+-dependent inactivation of a cloned cardiac Ca2+ channel α1subunit (α1C) expressed in Xenopus oocytes. Biophys. J. 66, 1895–1903 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Imredy, J. P. & Yue, D. T. Mechanism of Ca(2+)-sensitive inactivation of L-type Ca2+ channels. Neuron 12, 1301–1318 (1994).

    Article  CAS  Google Scholar 

  11. Höfer, G. F. et al. Intracellular Ca2+ inactivates L-type Ca2+ channels with a Hill coefficient of 1 and an inhibition constant of 4 µM by reducing channel's open probability. Biophys. J. 73, 1857–1865 (1997).

    Article  ADS  Google Scholar 

  12. Starr, T. V. B., Prystay, W. & Snutch, T. P. Primary structure of a calcium channel that is highly expressed in the rat cerebellum. Proc. Natl Acad. Sci. USA 88, 5621–5625 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Erickson-Viitanen, S. & DeGrado, W. F. Recognition and characterization of calmodulin-binding sequences in peptides and proteins. Methods Enzymol. 139, 455–478 (1987).

    Article  CAS  Google Scholar 

  14. Liu, M., Chen, T. Y., Ahamed, B., Li, J. & Yau, K. W. Calcium-calmodulin modulation of the olfactory cyclic nucleotide-gated cation channel. Science 266, 1348–1354 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Xia, X. M. et al. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395, 503–507 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Saimi, Y. & Kung, C. Ion channel regulation by calmodulin binding. FEBS Lett. 350, 155–158 (1994).

    Article  CAS  Google Scholar 

  17. Teo, T. S. & Wang, J. H. Mechanism of activation of a cyclic adenosine 3′:5′-monophosphate phosphodiesterase from bovine heart by calcium ions. J. Biol. Chem. 248, 5950–5955 (1973).

    CAS  PubMed  Google Scholar 

  18. Wu, Z., Wong, S. T. & Storm, D. R. Modification of the calcium and calmodulin sensitivity of the type I adenylyl cyclase by mutagenesis of its calmodulin binding domain. J. Biol. Chem. 268, 23766–23768 (1993).

    CAS  PubMed  Google Scholar 

  19. von Gersdorff, H. & Matthews, G. Calcium-dependent inactivation of calcium current in synaptic terminals of retinal bipolar neurons. J. Neurosci. 16, 115–122 (1996).

    Article  CAS  Google Scholar 

  20. Wang, L. Y. & Kaczmarek, L. K. High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Nature 394, 384–388 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Kamiya, H. & Zucker, R. S. Residual Ca2+ and short-term synaptic plasticity. Nature 371, 603–606 (1994).

    Article  ADS  CAS  Google Scholar 

  22. Cuttle, M. F., Tsujimoto, T., Forsythe, I. D. & Takahashi, T. Facilitation of the presynaptic calcium current at an auditory synapse in rat brainstem. J. Physiol. (Lond.) 512, 723–729 (1998).

    Article  CAS  Google Scholar 

  23. Borst, J. G. G. & Sakmann, B. Facilitation of presynaptic calcium currents in the rat brainstem. J. Physiol. (Lond.) 513, 149–155 (1998).

    Article  CAS  Google Scholar 

  24. Zühlke, R. D. & Reuter, H. Identification of a single amino acid residue as molecular determinant of calcium-dependent inactivation or facilitation of L-type calcium channels. Biophys. J. 76, A343 (1999).

    Google Scholar 

  25. Peterson, B. Z. et al. Individual amino acids within a consensus EF-hand motif are critical for calcium-dependent inactivation of α1Ccalcium channels. Biophys. J. 76, A340 (1999).

    Google Scholar 

  26. James, P., Vorherr, T. & Carafoli, E. Calmodulin-binding domains: just two-faced or multi-faceted? Trends Biochem. Sci. 20, 38–42 (1995).

    Article  CAS  Google Scholar 

  27. Fletcher, C. F. et al. Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 87, 607–617 (1996).

    Article  CAS  Google Scholar 

  28. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. & Elledge, S. J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816 (1993).

    Article  CAS  Google Scholar 

  29. Sakurai, T., Westenbroek, R. E., Rettig, J., Hell, J. & Catterall, W. A. Biochemical properties and subcellular distribution of the BI and rbA isoforms of α1Asubunits of brain calcium channels. J. Cell. Biol. 134, 511–528 (1996).

    Article  CAS  Google Scholar 

  30. Yokoyama, C. T., Sheng, Z.-H. & Catterall, W. A. Phosphorylation of the synaptic protein interaction site on N-type calcium channels inhibits interactions with SNARE proteins. J. Neurosci. 17, 6929–6938 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Snutch, M. Harpold and K. Campbell for cDNAs encoding Ca2+-channel subunits. This work was supported by an NRSA postdoctoral fellowship from the NIH to A.L. and by research grants from the NIH to D.R.S. and W.A.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Catterall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, A., Wong, S., Gallagher, D. et al. Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature 399, 155–159 (1999). https://doi.org/10.1038/20194

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/20194

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing