Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated

Abstract

At excitatory synapses in the central nervous system, the number of glutamate molecules released from a vesicle is much larger than the number of postsynaptic receptors. But does release of a single vesicle normally saturate these receptors? Answering this question is critical to understanding how the amplitude and variability of synaptic transmission are set and regulated. Here we describe the use of two-photon microscopy1 to image transient increases in Ca2+ concentration mediated by NMDA (N -methyl-D-aspartate) receptors in single dendritic spines of CA1 pyramidal neurons in hippocampal slices. To test for NMDA-receptor saturation, we compared responses to stimulation with single and double pulses. We find that a single release event does not saturate spine NMDA receptors; a second release occurring 10 ms later produces 80% more NMDA-receptor activation. The amplitude of spine NMDA-receptor-mediated [Ca2+] transients (and the synaptic plasticity which depends on this) may thus be sensitive to the number of quanta released by a burst of action potentials and to changes in the concentration profile of glutamate in the synaptic cleft.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Probabilistic activation of NMDA receptors monitored by imaging spine [Ca2+] transients.
Figure 2: Time course of NMDA-R currents and spine fluorescence transients.
Figure 3: NMDA receptors are not saturated following a single action potential.
Figure 4: Quantification of NMDA-R response linearity (see Methods for calculation).

Similar content being viewed by others

References

  1. Denk, W. & Svoboda, K. Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18, 351–357 (1997).

    Article  CAS  Google Scholar 

  2. Frerking, M. & Wilson, M. Saturation of postsynaptic receptors at central synapses? Curr. Opin. Neurobiol. 6, 395–403 (1996).

    Article  CAS  Google Scholar 

  3. Tang, C. M., Margulis, M., Shi, Q. Y. & Fielding, A. Saturation of postsynaptic glutamate receptors after quantal release of transmitter. Neuron 13, 1385–1393 (1994).

    Article  CAS  Google Scholar 

  4. Auger, C., Kondo, S. & Marty, A. Multivesicular release at single functional synaptic sites in cerebellar stellate and basket cells. J. Neurosci. 18, 4532–4547 (1998).

    Article  CAS  Google Scholar 

  5. Lester, R. A., Clements, J. D., Westbrook, G. L. & Jahr, C. E. Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature 346, 565–567 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Clements, J. D., Lester, R. A., Tong, G., Jahr, C. E. & Westbrook, G. L. The time course of glutamate in the synaptic cleft. Science 258, 1498–1501 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Yuste, R. & Denk, W. Dendritic spines as basic functional units of neuronal integration. Nature 375, 682–684 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Harris, K. M. & Stevens, J. K. Dendritic spines of CA1 pyramidal cells in the rat hippocampus: Serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 9, 2982–2997 (1989).

    Article  CAS  Google Scholar 

  9. Schikorski, T. & Stevens, C. F. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurosci. 17, 5858–5867 (1997).

    Article  CAS  Google Scholar 

  10. Mainen, Z. F. et al. Two-photon imaging in living brain slices. Methods: A Companion to Methods in Enzymology 18(in the press).

    Article  CAS  Google Scholar 

  11. Regehr, W. G. & Atluri, P. P. Calcium transients in cerebellar granule cell presynaptic terminals. Biophys. J. 68, 2156–2170 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Markram, H., Helm, P. J. & Sakmann, B. Dendritic calcium transients evoked by single back-propagating action potentials in rat neocortical pyramidal neurons. J. Physiol. (Lond.) 485, 1–20 (1995).

    Article  CAS  Google Scholar 

  13. Manabe, T. & Nicoll, R. A. Long-term potentiation: evidence against an increase in transmitter release probability in the CA1 region of the hippocampus. Science 265, 1888–1892 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Mainen, Z. F., Jia, Z. P., Roder, J. & Malinow, R. Use-dependent AMPA receptor block in mice lacking GluR2 suggests postsynaptic site for LTP expression. Nature Neurosci. 1, 579–586 (1998).

    Article  CAS  Google Scholar 

  15. Korn, H., Mallet, A., Triller, A. & Faber, D. S. Transmission at a central inhibitory synapse. II. Quantal description of release, with a physical correlate for binomial n. J. Neurophysiol. 48, 679–707 (1982).

    Article  CAS  Google Scholar 

  16. Stevens, C. F. & Wang, Y. Facilitation and depression at single central synapses. Neuron 14, 795–802 (1995).

    Article  CAS  Google Scholar 

  17. Dobrunz, L. E., Huang, E. P. & Stevens, C. F. Very short-term plasticity in hippocampal synapses. Proc. Natl Acad. Sci. USA 94, 14843–14847 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Tong, G. & Jahr, C. E. Multivesicular release from excitatory synapses of cultured hippocampal neurons. Neuron 12, 51–59 (1994).

    Article  CAS  Google Scholar 

  19. Clements, J. D. Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci. 19, 163–171 (1996).

    Article  CAS  Google Scholar 

  20. Rusakov, D. A. & Kullmann, D. M. Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation. J. Neurosci. 18, 3158–3170 (1998).

    Article  CAS  Google Scholar 

  21. Holmes, W. R. Modeling the effect of glutamate diffusion and uptake on NMDA and non-NMDA receptor saturation. Biophys. J. 69, 1734–1747 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Tong, G. & Jahr, C. E. Block of glutamate transporters potentiates postsynaptic excitation. Neuron 13, 1195–1203 (1994).

    Article  CAS  Google Scholar 

  23. Barbour, B. & Hausser, M. Intersynaptic diffusion of neurotransmitter. Trends Neurosci. 20, 377–384 (1997).

    Article  CAS  Google Scholar 

  24. Faber, D. S., Young, W. S., Legendre, P. & Korn, H. Intrinsic quantal variability due to stochastic properties of receptor–transmitter interactions. Science 258, 1494–1498 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Silver, R. A., Cull-Candy, S. G. & Takahashi, T. Non-NMDA glutamate receptor occupancy and open probability at a rat cerebellar synapse with single and multiple release sites. J. Physiol. (Lond.) 494, 231–250 (1996).

    Article  CAS  Google Scholar 

  26. Bliss, T. V. P. & Collingridge, G. L. Asynaptic model of memory: Long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Cummings, J. A., Mulkey, R. M., Nicoll, R. A. & Malenka, R. C. Ca2+ signaling requirements for long-term depression in the hippocampus. Neuron 16, 825–833 (1996).

    Article  CAS  Google Scholar 

  28. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. & Prochiantz, A. Magnesium gates glutamate-activated channels in mouse central neurons. Nature 307, 462–465 (1984).

    Article  ADS  CAS  Google Scholar 

  29. Svoboda, K., Tank, D. W. & Denk, W. Direct measurement of coupling between dendritic spines and shafts. Science 272, 716–719 (1996).

    Article  ADS  CAS  Google Scholar 

  30. Helmchen, F., Imoto, K. & Sakmann, B. Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys. J. 70, 1069–1081 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Burroughs Wellcome Career Award (Z.F.M.), grants from NIH and the Mather's Foundation (R.M.), and grants from the Pew and Whitaker Foundations (K.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Svoboda.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mainen, Z., Malinow, R. & Svoboda, K. Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature 399, 151–155 (1999). https://doi.org/10.1038/20187

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/20187

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing