Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rac regulates phosphorylation of the myosin-II heavy chain, actinomyosin disassembly and cell spreading

Abstract

GTPases of the Rho family regulate actinomyosin-based contraction in non-muscle cells. Activation of Rho increases contractility, leading to cell rounding and neurite retraction in neuronal cell lines. Activation of Rac promotes cell spreading and interferes with Rho-mediated cell rounding. Here we show that activation of Rac may antagonize Rho by regulating phosphorylation of the myosin-II heavy chain. Stimulation of PC12 cells or N1E-115 neuroblastoma cells with bradykinin induces phosphorylation of threonine residues in the myosin-II heavy chain; this phosphorylation is Ca2+ dependent and regulated by Rac. Both bradykinin-mediated and constitutive activation of Rac promote cell spreading, accompanied by a loss of cortical myosin II. Our results identify the myosin-II heavy chain as a new target of Rac-regulated kinase pathways, and implicate Rac as a Rho antagonist during myosin-II-dependent cell-shape changes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bradykinin activates Rac and induces phosphorylation of the myosin-II heavy chain.
Figure 2: MHC phosphorylation is regulated by Rac activity.
Figure 3: Bradykinin and activation of Rac induce cell spreading and redistribution of myosin II in N1E-115 cells; constitutively active RhoAV14 and dominant-negative Pak inhibit spreading.
Figure 4: Involvement of Pak kinases and Ca2+ in MHC phosphorylation.
Figure 5: Signalling pathways regulating neuroblastoma morphology.

Similar content being viewed by others

References

  1. Amano, M. et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271, 20246–20249 (1996).

    Article  CAS  Google Scholar 

  2. Kimura, K. et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273, 245–248 (1996).

    Article  CAS  Google Scholar 

  3. Jalink, K., Hengeveld, T., Morii, N., Narumiya, S. & Moolenaar, W. H. Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J. Cell Biol. 126, 801–810 (1994).

    Article  CAS  Google Scholar 

  4. Hirose, M. et al. Molecular dissection of the Rho-associated protein kinase (p160ROCK)- regulated neurite remodeling in neuroblastoma N1E-115 cells. J. Cell Biol. 141, 1625–1636 (1998).

    Article  CAS  Google Scholar 

  5. van Leeuwen, F. N. et al. The guanine nucleotide exchange factor Tiam1 affects neuronal morphology; opposing roles for the small GTPases Rac and Rho. J. Cell Biol. 139, 797–807 (1997).

    Article  CAS  Google Scholar 

  6. Kozma, R., Sarner, S., Ahmed, S. & Lim, L. Rho family GTPases and neuronal growth cone remodeling: relationship between increased complexity induced by Cdc42 Hs, Rac1 and acetylcholine, and collapse induced by RhoA and lysophosphatidic acid. Mol. Cell. Biol. 17, 1201–1211 (1997).

    Article  CAS  Google Scholar 

  7. Lim, L., Manser, E., Leung, T. & Hall, C. Regulation of phosphorylation pathways by p21 GTPases. Eur. J. Biochem. 242, 171–185 (1996).

    Article  CAS  Google Scholar 

  8. Sander, E. E. et al. Matrix-dependent Tiam1/Rac signaling in epithelial cells promotes either cell-cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J. Cell Biol. 143, 1385–1398 (1998).

    Article  CAS  Google Scholar 

  9. Manser, E., Leung, T., Salihuddin, H., Zhao, Z. S. & Lim, L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367, 40–46 (1994).

    Article  CAS  Google Scholar 

  10. Michiels, F., Habets, G. G. M., Stam, J. C., Van der Kammen, R. A. & Collard, J. G. A role for Rac-1 in Tiam1 induced membrane ruffling and T-lymphoma invasion. Nature 375, 338–340 (1995).

    Article  CAS  Google Scholar 

  11. Kozma, R., Ahmed, S., Best, A. & Lim, L. The Ras-related protein Cdc42HS and Bradykinin promote the formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol. Cell. Biol. 15, 1942–1952 (1995).

    Article  CAS  Google Scholar 

  12. Nobes, C. D. & Hall, A. Rho, Rac and Cdc42 GTPases regulate the assembly of multi-molecular focal complexes associated with actin stress fibers, lamellipodia and filopodia. Cell 81, 53–62 (1995).

    Article  CAS  Google Scholar 

  13. Sells, M. A. et al. Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr. Biol. 7, 202–210 (1997).

    Article  CAS  Google Scholar 

  14. Manser, E. et al. Expression of constitutively active alpha-PAK reveals effects of the kinase on actin and focal complexes. Mol. Cell Biol. 17, 1129–1143 (1997).

    Article  CAS  Google Scholar 

  15. Daniels, R. H., Hall, P. S. & Bokoch, G. M. Membrane targeting of p21-activated kinase 1 (PAK1) induces neurite outgrowth from PC12 cells. EMBO J. 17, 754–764 (1998).

    Article  CAS  Google Scholar 

  16. Tang, Y. et al. Kinase deficient Pak1 mutants inhibit Ras transformation of Rat-1 fibroblasts. Mol. Cell. Biol. 17, 4454–4464 (1997).

    Article  CAS  Google Scholar 

  17. King, A. J. et al. The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature 396, 180–183 (1998).

    Article  CAS  Google Scholar 

  18. Fasolato, C., Pandiella, A., Meldolesi, J. & Pozzan, T. Generation of inositol phosphates, cytosolic Ca2+, and ionic fluxes in PC12 cells treated with bradykinin. J. Biol. Chem. 263, 17350–17359 (1988).

    CAS  PubMed  Google Scholar 

  19. Zheng, J. Q., Felder, M., Connor, J. A. & Poo, M. M. Turning of nerve growth cones induced by neurotransmitters. Nature 368, 140–144 (1994).

    Article  CAS  Google Scholar 

  20. Burridge, K. & Chrzanowska-Wodnicka, M. Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol. 12, 463–518 (1996).

    Article  CAS  Google Scholar 

  21. Chrzanowska-Wodnicka, M. & Burridge, K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 133, 1403–1415 (1996).

    Article  CAS  Google Scholar 

  22. Tan, J. L., Ravid, S. & Spudich, J. A. Control of nonmuscle myosins by phosphorylation. Annu. Rev. Biochem. 61, 721–759 (1992).

    Article  CAS  Google Scholar 

  23. Ludowyke, R. I., Peleg, I., Beaven, M. A. & Adelstein, R. S. Antigen-induced secretion of histamine and the phosphorylation of myosin by protein kinase C in rat basophilic leukemia cells. J. Biol. Chem. 264, 12492–12501 (1989).

    CAS  PubMed  Google Scholar 

  24. Spudich, A. Myosin reorganization in activated RBL cells correlates temporally with stimulated secretion. Cell Motil. Cytoskeleton 29, 345–353 (1994).

    Article  CAS  Google Scholar 

  25. Wilson, J. R., Ludowyke, R. I. & Biden, T. J. Nutrient stimulation results in a rapid Ca2+-dependent threonine phosphorylation of myosin heavy chain in rat pancreatic islets and RINm5F cells. J. Biol. Chem. 273, 22729–22737 (1998).

    Article  CAS  Google Scholar 

  26. Brzeska, H. & Korn, E. D. Regulation of class I and class II myosins by heavy chain phosphorylation. J. Biol. Chem. 271, 16983–16986 (1996).

    Article  CAS  Google Scholar 

  27. Egelhoff, T. T., Lee, R. J. & Spudich, J. A. Dictyostelium myosin heavy chain phosphorylation sites regulate myosin filament assembly and localization in vivo. Cell 75, 363–371 (1993).

    Article  CAS  Google Scholar 

  28. Murakami, N., Chauhan, V. P. & Elzinga, M. Two nonmuscle myosin II heavy chain isoforms expressed in rabbit brains: filament forming properties, the effects of phosphorylation by protein kinase C and casein kinase II, and location of the phosphorylation sites. Biochemistry 37, 1989–2003 (1998).

    Article  CAS  Google Scholar 

  29. Mitchison, T. J. & Cramer, L. P. Actin-based cell motility and cell locomotion. Cell 84, 371–379 (1996).

    Article  CAS  Google Scholar 

  30. Peppelenbosch, M. P. et al. Rac-dependent and -independent pathways mediate growth factor-induced Ca2+ influx. J. Biol Chem. 271, 7883–7886 (1996).

    Article  CAS  Google Scholar 

  31. Lee, S. F., Egelhoff, T. T., Mahasneh, A. & Cote, G. P. Cloning and characterization of a Dictyostelium myosin I heavy chain kinase activated by Cdc42 and Rac. J. Biol Chem. 271, 27044–27048 (1996).

    Article  CAS  Google Scholar 

  32. Brzeska, H., Szczepanowska, J., Hoey, J. & Korn, E. D. The catalytic domain of acanthamoeba myosin I heavy chain kinase. II. Expression of active catalytic domain and sequence homology to p21- activated kinase (PAK). J. Biol Chem. 271, 27056–27062 (1996).

    Article  CAS  Google Scholar 

  33. Wu, C. et al. Activation of myosin-I by members of the Ste20p protein family. J. Biol Chem. 271, 31787–31790 (1996).

    Article  CAS  Google Scholar 

  34. Sanders, L. C., Matsumura, F., Bokoch, G. M. & de Lanerolle, P. Inhibition of myosin light chain kinase by p21-activated kinase. Science 283, 2083–2085 (1999).

    Article  CAS  Google Scholar 

  35. Sells, M. A., Boyd, J. T. & Chernoff, J. p21-activated kinase 1 (Pak1) regulates cell motility in mammalian fibroblasts. J. Cell Biol. 145, 837–849 (1999).

    Article  CAS  Google Scholar 

  36. Burridge, K. Crosstalk between Rac and Rho. Science 283, 2028–2029 (1999).

    Article  CAS  Google Scholar 

  37. Ramos, E., Wysolmerski, R. B. & Masaracchia, R. A. Myosin phosphorylation by human cdc42-dependent S6/H4 kinase/gammaPAK from placenta and lymphoid cells. Recept. Signal Transduct. 7, 99–110 (1997).

    CAS  PubMed  Google Scholar 

  38. Van Eyk, J. E. et al. Different molecular mechanisms for Rho family GTPase-dependent, Ca2+- independent contraction of smooth muscle. J. Biol Chem. 273, 23433–23439 (1998).

    Article  CAS  Google Scholar 

  39. Yablonski, D., Kane, L. P., Qian, D. & Weiss, A. A Nck-Pak1 signaling module is required for T-cell receptor-mediated activation of NFAT, but not of JNK. EMBO J. 17, 5647–5657 (1998).

    Article  CAS  Google Scholar 

  40. Kinsella, T. M. & Nolan, G. P. Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum. Gene Ther. 7, 1405–1413 (1996).

    Article  CAS  Google Scholar 

  41. Kelley, C. A. et al. Xenopus nonmuscle myosin heavy chain isoforms have different subcellular localizations and enzymatic activities. J. Cell Biol. 134, 675–687 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Hall for providing Rac and Rho cDNAs; G. Nolan for providing phoenix eco- and amphotrophic packaging cells and LZRS retroviral vectors; and L.Oomen and N. Ong for help in making the figures. This work was supported by grants from the Dutch Cancer Society to J.G.C.

Correspondence and requests for materials should be addressed to J.G.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Collard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Leeuwen, F., van Delft, S., Kain, H. et al. Rac regulates phosphorylation of the myosin-II heavy chain, actinomyosin disassembly and cell spreading. Nat Cell Biol 1, 242–248 (1999). https://doi.org/10.1038/12068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12068

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing