Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase

Abstract

In metazoans, certain calmodulin-related calcium-binding proteins (recoverins, neurocalcins and frequenins) are found at highest levels in excitable cells, but their physiological roles are largely uncharacterized. Here we show that Saccharomyces cerevisiae contains a frequenin homologue, Frq1, and that its target is Pik1, a phosphatidylinositol-4-OH kinase. Frq1 binds to a conserved sequence motif in Pik1 outside Pik1’s catalytic domain and stimulates its activity in vitro. N-myristoylated Frq1 may also assist in Pik1 localization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The FRQ1 gene product is a frequenin-like protein.
Figure 2: FRQ1 is an essential gene and the functional homologue of vertebrate frequenin.
Figure 3: PIK1, encoding an essential PtdIns-4-OH kinase, is a dosage suppressor of the temperature-sensitive lethality of the frq1-1ts mutation.
Figure 4: Overexpression of FRQ1 suppresses the temperature-sensitive lethality of pik1ts mutations in an allele-specific manner.
Figure 5: Frq1 associates physically with Pik1.
Figure 6: A conserved N-terminal sequence in Pik1 is both necessary and sufficient for binding of Frq1.
Figure 7: Interaction with Frq1 stimulates the catalytic activity of Pik1.
Figure 8: Optimal function of Frq1 requires its N-myristoylation.

Similar content being viewed by others

References

  1. Soderling, T. R. Calcium-dependent protein kinases in learning and memory. Adv. Second Messen. Phosphoprot. Res. 30, 175– 189 (1995).

    Article  CAS  Google Scholar 

  2. Goda, Y. & Sudhof, T. C. Calcium regulation of neurotransmitter release: reliably unreliable? Curr. Opin. Cell Biol. 9, 513–518 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Janmey, P. A. The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol. Rev. 78, 763– 781 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Bito, H., Deisseroth, K. & Tsien, R. W. Ca2+-dependent regulation in neuronal gene expression. Curr. Opin. Neurobiol. 7, 419–429 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Ikura, M. Calcium binding and conformational response in EF-hand proteins. Trends Biochem. Sci. 21, 14–17 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Flaherty, K. M., Zozulya, S., Stryer, L. & McKay, D. B. Three-dimensional structure of recoverin, a calcium sensor in vision. Cell 75, 709–716 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Yamagata, K., Goto, K., Kuo, C. H., Kondo, H. & Miki, N. Visinin: a novel calcium binding protein expressed in retinal cone cells. Neuron 4, 469–476 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  8. Lenz, S. E., Henschel, Y., Zopf, D., Voss, B. & Gundelfinger, E. D. VILIP, a cognate protein of the retinal calcium binding proteins, visinin and recoverin, is expressed in the developing chicken brain . Mol. Brain Res. 15, 133– 140 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Okazaki, K. et al. Full sequence of neurocalcin, a novel calcium-binding protein abundant in central nervous system. Biochem. Biophys. Res. Commun. 185, 147–153 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  10. Kobayashi, M., Takamatsu, K., Saitoh, S., Miura, M. & Noguchi, T. Molecular cloning of hippocalcin, a novel calcium-binding protein of the recoverin family exclusively expressed in hippocampus. Biochem. Biophys. Res. Commun. 189, 511–517 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Pongs, O. et al. Frequenin — a novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron 11, 15–28 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  12. Detwiler, P. B. & Gray-Keller, M. P. The mechanisms of vertebrate light adaptation: speeded recovery versus slowed activation . Curr. Opin. Neurobiol. 6, 440– 444 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Polans, A., Baehr, W. & Palczewski, K. Turned on by Ca2+! The physiology and pathology of Ca2+-binding proteins in the retina. Trends Neurosci. 19, 547–554 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Ames, J. B. et al. Molecular mechanics of calcium-myristoyl switches. Nature 389, 198–202 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  15. Johnson, D. R., Bhatnagar, R. S., Knoll, L. J. & Gordon, J. I. Genetic and biochemical studies of protein N-myristoylation. Annu. Rev. Genet. 63, 869–914 (1994).

    CAS  Google Scholar 

  16. Davis, T. N., Urdea, M. S., Masiarz, F. R. & Thorner, J. Isolation of the yeast calmodulin gene: calmodulin is an essential protein . Cell 47, 423–431 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Baum, P., Furlong, C. & Byers, B. Yeast gene required for spindle pole body duplication: homology of its product with Ca2+-binding proteins. Proc. Natl Acad. Sci. USA 83, 5512– 5516 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cyert, M. S. & Thorner, J. Regulatory subunit (CNB1 gene product) of yeast Ca2+/calmodulin-dependent phosphoprotein phosphatases is required for adaptation to pheromone. Mol. Cell. Biol. 12, 3460–3469 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stevens, R. C. & Davis, T. N. Mlc1p is a light chain for the unconventional myosin Myo2p in Saccharomyces cerevisiae. J. Cell Biol. 142, 711– 722 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jacq, C. et al. The nucleotide sequence of Saccharomyces cerevisiae chromosome IV. Nature 387, (Suppl.), 75– 78 (1997).

    CAS  PubMed  Google Scholar 

  21. Ray, S. et al. Cloning, expression, and crystallization of recoverin, a calcium sensor in vision. Proc. Natl Acad. Sci. USA 89, 5705–5709 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Olafsson, P., Wang, T. & Lu, B. Molecular cloning and functional characterization of the Xenopus Ca2+-binding protein frequenin. Proc. Natl Acad. Sci. USA 92, 8001–8005 ( 1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Muhlrad, D., Hunter, R. & Parker, R. A rapid method for localized mutagenesis of yeast genes . Yeast 8, 79–82 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Sikorski, R. S. & Boeke, J. D. In vitro mutagenesis and plasmid shuffling: from cloned gene to mutant yeast. Methods Enzymol. 194, 302–318 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Davis, T. N. A temperature-sensitive calmodulin mutant loses viability during mitosis. J. Cell Biol. 118, 607–617 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Ohya, Y. & Botstein, D. Structure-based systematic isolation of conditional-lethal mutations in the single yeast calmodulin gene. Genetics 138, 1041–1054 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Flanagan, C. A. et al. Phosphatidylinositol 4-kinase: gene structure and requirement for yeast cell viability. Science 262, 1444 –1448 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Schnieders, E. A. Biochemical and Genetic Analysis of a Phosphatidylinositol 4-Kinase (PIK1 Gene Product) in the yeast Saccharomyces cerevisiae. Thesis, Univ. California, Berkeley (1996).

    Google Scholar 

  29. Fruman, D. A., Meyers, R. E. & Cantley, L. C. Phosphoinositide kinases. Annu. Rev. Biochem. 67, 481–507 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  30. Gehrmann, T. & Heilmeyer, L. M. Jr Phosphatidylinositol 4-kinases . Eur. J. Biochem. 253, 357– 370 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Evan, G. I., Lewis, G. K., Ramsay, G. & Bishop, J. M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol. 5, 3610–3616 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Auble, D. T. et al. Mot1, a global repressor of RNA polymerase II transcription, inhibits TBP binding to DNA by an ATP-dependent mechanism. Genes Dev. 8, 1920–1934 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  33. Flanagan, C. A. & Thorner, J. Purification and characterization of a soluble phosphatidyl-inositol 4-kinase from the yeast Saccharomyces cerevisiae. J. Biol. Chem. 267, 24117–24125 (1992).

    CAS  PubMed  Google Scholar 

  34. Hendricks, K. B. The FRQ1 Gene Product is a Positive Regulator of Phosphatidylinositol 4-Kinase in the yeast Saccharomyces cerevisiae. Thesis, Univ. California, Berkeley (1999).

    Google Scholar 

  35. Vignes, M., Blanc, E., Sassetti, I. & Recasens, M. Intra- vs extracellular calcium regulation of neurotransmitter-stimulated phosphoinositide breakdown . Neurochem. Intl 28, 145– 153 (1996).

    Article  CAS  Google Scholar 

  36. Martin, T. F. J., Loyet, K. M., Barry, V. A. & Kowalchyk, J. A. The role of PtdIns(4,5)P2 in exocytotic membrane fusion. Biochem. Soc. Trans. 25, 1137–1141 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Jost, M., Simpson, F., Kavran, J. M., Lemmon, M. A. & Schmid, S. L. Phosphatidyl-inositol-4,5-bisphosphate is required for endocytic coated vesicle formation. Curr. Biol. 8, 1399–1402 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  38. McFerran, B. W., Graham, M. E. & Burgoyne, R. D. Neuronal Ca2+ sensor 1, the mammalian homologue of frequenin, is expressed in chromaffin and PC12 cells and regulates neurosecretion from dense-core granules. J. Biol. Chem. 273, 22768–22772 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Wiedemann, C., Schafer, T., Burger, M. M. & Sihra, T. S. An essential role for a small synaptic vesicle-associated phosphatidylinositol 4-kinase in neurotransmitter release. J. Neurosci. 18, 5594–5602 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yoshida, S., Ohya, Y., Goebl, M., Nakano, A. & Anraku, Y. A novel gene, STT4, encodes a phosphatidylinositol 4-kinase in the PKC1 protein kinase pathway of Saccharomyces cerevisiae. J. Biol. Chem. 269, 1166–1172 (1994).

    CAS  PubMed  Google Scholar 

  41. Rebecchi, M. J. & Scarlata, S. Pleckstrin homology domains: a common fold with diverse functions. Annu. Rev. Biophys. Biomol. Struct. 27, 503–528 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Sherman, F., Fink, G. R. & Hicks, J. A. Laboratory Course Manual for Methods in Yeast Genetics (Cold Spring Harb. Lab. Press, Cold Spring Harbor, 1986).

    Google Scholar 

  43. Guthrie, C. & Fink, G. R. Guide to Yeast Genetics and Molecular Biology (Academic, New York, 1991).

    Google Scholar 

  44. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harb. Lab. Press, Cold Spring Harbor, 1989).

    Google Scholar 

  45. Feinberg, A. P. & Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6– 13 (1983).

    Article  CAS  PubMed  Google Scholar 

  46. Jones, J. S. & Prakash, L. Yeast Saccharomyces cerevisiae selectable markers in pUC18 polylinkers. Yeast 6, 363–366 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Rothstein, R. J. One-step gene disruption in yeast. Methods Enzymol. 101 202–211 (1983).

    Article  CAS  PubMed  Google Scholar 

  48. Hoffman, C. S. & Winston, F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57, 267 –272 (1987).

    Article  CAS  PubMed  Google Scholar 

  49. Southern, E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis . J. Mol. Biol. 98, 503– 517 (1975).

    Article  CAS  PubMed  Google Scholar 

  50. Sikorski, R. S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hill, J. E., Myers, A. M., Koerner, T. J. & Tzagoloff, A. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2, 163–167 ( 1986).

    Article  CAS  PubMed  Google Scholar 

  52. Johnston, M. & Davis, R. W. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4, 1440–1448 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Benton, B. M. et al. Signal-mediated import of bacteriophage T7 RNA polymerase into the Saccharomyces cerevisiae nucleus and specific transcription of target genes. Mol. Cell. Biol. 10, 353 –360 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Benton, B. M., Zang, J. H. & Thorner, J. A novel FK506- and rapamycin-binding protein (FPR3 gene product) in the yeast Saccharomyces cerevisiae is a proline rotamase localized to the nucleolus. J. Cell Biol. 127, 623–639 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Duronio, R. J., Rudnick, D. A., Johnson, R. L., Linder, M. E. & Gordon, J. I. Reconstitution of protein N-myristoylation in Escherichia coli. Methods 1, 253–263 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Dunn and D. S. King for technical assistance; K. Matsuoka for help with PtdIns-4-OH kinase assays; J. Adamkewicz and M. Kim for purified Mot1C–His6 protein; B. Lu for frequenin cDNA and antibodies; L. Stryer for recoverin cDNA and antibodies; and S. Emr, M. Hall and D. Voelker for plasmids. This work was supported by USPHS Predoctoral Traineeships GM07232 (to K.B.H. and E.A.S.), NIH–NRSA Postdoctoral Fellowship CA73380 (to B.Q.W.), NIH Research Grant GM21841 (to J.T.), and facilities provided by the Berkeley campus Cancer Research Laboratory.

Correspondence and requests for materials should be addressed to J.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Thorner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hendricks, K., Qing Wang, B., Schnieders, E. et al. Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase . Nat Cell Biol 1, 234–241 (1999). https://doi.org/10.1038/12058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12058

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing