Skip to main content
Published Online:https://doi.org/10.1027/0269-8803.22.1.20

There is broad evidence for a functional interaction between the cardiovascular and pain regulatory systems. One result of this interaction is the reduced sensitivity to acute pain in individuals with elevated blood pressure, which has been established in numerous studies. In contrast to this, possible alterations in pain perception related to the lower range of blood pressure have not yet been investigated. In the present study pain sensitivity was assessed in 30 hypotensive women (mean blood pressure 95/56 mmHg) and 30 normotensive control persons (mean blood pressure 119/77 mmHg) based on a cold pressor test. Possible effects on pain perception of hypotension-related impairment of subjective state were controlled for by including a mood-scale. The hypotensive as compared to the normotensive group displayed lower pain threshold and pain tolerance levels, as well as increased sensory and affective experiences of pain. Moreover, a slight negative correlation was found, both in hypotensive and control persons, between pain sensitivity and the degree of blood pressure increase during the execution of the cold pressor test. In accordance with the previous findings on hypertension-related hypoalgesia, the present results suggest an inverse relationship between blood pressure and pain sensitivity across the total blood pressure spectrum. Different degrees of pain attenuation through afferent input from the arterial baroreceptor system are discussed as a physiological mechanism mediating this relationship.

References

  • Baumbach, G.L. , Heistad, D.D. (1988). Cerebral circulation in chronic arterial hypertension. Hypertension, 12, 89–95. First citation in articleCrossrefGoogle Scholar

  • Bismarck, M. , Rust, G. (1982). Erste Erfahrungen mit dem Antihypotonikum Thomasin (= Etilefrin) unter ambulanten Bedingungen (eine Doppelblindstudie) [Initial experience with the anti-hypotensive agent Thomasin (= Etilefrin) in outpatients (a double-blind study)]. Zeitschrift für Ärztliche Fortbildung, 76, 153–156. First citation in articleGoogle Scholar

  • Bossut, D.F. , Maixner, W. (1996). Effects of cardiac vagal afferent electrostimulation on the responses of trigeminal and trigeminothalamic neurons to noxious orofacial stimulation. Pain, 65, 101–109. First citation in articleCrossrefGoogle Scholar

  • Bruehl, S. , Carlson, C.R. , McCubbin, J.A. (1992). The relationship between pain sensitivity and blood pressure in normotensives. Pain, 48, 463–467. First citation in articleCrossrefGoogle Scholar

  • Bruehl, S. , Chung, O.Y. , Ward, P. , Johnson, B. , McCubbin, J.A. (2002). The relationship between resting blood pressure and acute pain sensitivity in healthy normotensives and chronic back pain sufferers: The effects of opioid blockade. Pain, 100, 191–201. First citation in articleCrossrefGoogle Scholar

  • Bruehl, S. , Chung, O.Y. (2004). Interactions between the cardiovascular and pain regulatory systems: An updated review of mechanisms and possible alterations in chronic pain. Neuroscience and Biobehavioral Reviews, 28, 395–414. First citation in articleCrossrefGoogle Scholar

  • Carlson, N.R. (2004). Physiology of behavior. Harlow: Pearson Education. First citation in articleGoogle Scholar

  • Costa, M. , Stegagno, L. , Schandry, R. , Bitti, P.E.R. (1998). Contingent negative variation and cognitive performance in hypotension. Psychophysiology, 35, 737–744. First citation in articleCrossrefGoogle Scholar

  • Dembowsky, K. , Seller, H. (1995). Arterial baroreceptor reflexes. In D. Vaitl, R. Schandry (Eds.), From the heart to the brain: The psychophysiology of circulation-brain interaction (pp. 35–60). Frankfurt a.M.: Europäischer Verlag der Wissenschaften. First citation in articleGoogle Scholar

  • Ditto, B. , D’Antono, B. , Dupuis, G. (2007). Chest pain is inversely associated with blood pressure during exercise among individuals being assessed for coronary heart disease. Psychophysiology, 44, 183–188. First citation in articleCrossrefGoogle Scholar

  • Droste, C. , Kardos, A. , Brody, S. , Greenlee, M.W. , Roskamm, H. , Rau, H. (1994). Baroreceptor stimulation: Pain perception and sensory thresholds. Biological Psychology, 37, 101–113. First citation in articleCrossrefGoogle Scholar

  • Duschek, S. , Hadjamu, M. , Schandry, R. (2007). Enhancement of cerebral blood flow and cognitive performance due to pharmacological blood pressure elevation in chronic hypotension. Psychophysiology, 44, 145–153. First citation in articleCrossrefGoogle Scholar

  • Duschek, S. , Matthias, E. , Schandry, R. (2005). Essential hypotension is accompanied by deficits in attention and working memory. Behavioral Medicine, 30, 149–158. First citation in articleCrossrefGoogle Scholar

  • Duschek, S. , Meinhardt, J. , Schandry, R. (2006). Reduced cortical activity due to chronic low blood pressure: An EEG study. Biological Psychology, 72, 241–250. First citation in articleCrossrefGoogle Scholar

  • Duschek, S. , Schandry, R. (2004). Cognitive performance and cerebral blood flow in essential hypotension. Psychophysiology, 41, 905–913. First citation in articleCrossrefGoogle Scholar

  • Duschek, S. , Schandry, R. (2005). Subjektive Beschwerden und kognitive Minderleistungen bei essentieller Hypotonie [Subjective complaints and reduced cognitive performance in essential hypotension]. Verhaltenstherapie und Verhaltensmedizin, 26, 5–31. First citation in articleGoogle Scholar

  • Duschek, S. , Schandry, R. (2006a). Antriebsschwäche und beeinträchtigte Hirnleistungen: Neue Perspektiven zum chronisch niedrigen Blutdruck [Reduced drive and cerebral performance: new perspectives on chronic low blood pressure]. Deutsche Medizinische Wochenschrift, 131, 272–277. First citation in articleCrossrefGoogle Scholar

  • Duschek, S. , Schandry, R. (2006b). Deficient adjustment of cerebral blood flow to cognitive activity due to chronically low blood pressure. Biological Psychology, 72, 311–317. First citation in articleCrossrefGoogle Scholar

  • Duschek, S. , Schandry, R. (2007). Reduced brain perfusion and cognitive performance due to essential hypotension. Clinical Autonomic Research, 17, 69–76. First citation in articleCrossrefGoogle Scholar

  • Duschek, S. , Weisz, N. , Schandry, R. (2003). Reduced cognitive performance and prolonged reaction time accompany moderate hypotension. Clinical Autonomic Research, 13, 427–432. First citation in articleCrossrefGoogle Scholar

  • Dworkin, B. , Filewich, R. , Miller, N. , Craigmule, N. , Pickering, T. (1979). Baroreceptor activation reduces reactivity to noxious stimulation: Implications in hypertension. Science, 205, 1299–1301. First citation in articleCrossrefGoogle Scholar

  • Edens, J.L. , Gil, K.M. (1995). Experimental induction of pain: Utility in the study of clinical pain. Behavior Therapy, 26, 197–216. First citation in articleCrossrefGoogle Scholar

  • Fillingim, R.B. , Maixner, W. (1996). The influence of resting blood pressure and gender on pain responses. Psychosomatic Medicine, 58, 326–332. First citation in articleCrossrefGoogle Scholar

  • France, C.R. (1999). Decreased pain perception and risk for hypertension: Considering a common physiological mechanism. Psychophysiology, 36, 683–692. First citation in articleCrossrefGoogle Scholar

  • France, C. , Katz, J. (1999). Postsurgical pain is attenuated in men with elevated presurgical systolic blood pressure. Pain Research and Management, 4, 100–103. First citation in articleCrossrefGoogle Scholar

  • Fruhstorfer, H. , Lindblom, U. (1983). Vascular participation in deep cold pain. Pain, 17, 235–241. First citation in articleCrossrefGoogle Scholar

  • Ghione, S. (1996). Hypertension-associated analgesia. Hypertension, 28, 494–504. First citation in articleCrossrefGoogle Scholar

  • Guyton, A.C. , Hall, J.E. (2005). Textbook of medical physiology. Philadelphia: Saunders. First citation in articleGoogle Scholar

  • Hagen, K. , Stovner, L.J. , Vatten, L. , Holmen, J. , Zwart, J.-A. , Bovim, G. (2002). Blood pressure and risk of headache: A prospective study of 22,685 adults in Norway. Journal of Neurology, Neurosurgery, and Psychiatry, 72, 463–466. First citation in articleGoogle Scholar

  • Hagen, K. , Zwart, J.A. , Holmen, J. , Svebak, S. , Bavim, G. , Stovner, L.J. (2005). Does hypertension protect against chronic musculoskeletal complaints? The Nord-Trondelag Health Study. Archives of Internal Medicine, 165, 916–922. First citation in articleCrossrefGoogle Scholar

  • Hajdu, M.A. , Baumbach, G.L. (1994). Mechanisms of large and small cerebral arteries in chronic hypertension. American Journal of Physiology, 35, H1027–H1033. First citation in articleGoogle Scholar

  • Harsanyi, J. , Kiss, D. (1985). Hypotonie in der Schwangerschaft [Hypotension during pregnancy]. Zentralblatt für Gynäkologie, 107, 363–369. First citation in articleGoogle Scholar

  • Kardos, A. , Rau, H. , Greenlee, M.W. , Droste, C. , Brody, S. , Roskamm, H. (1994). Reduced pain during baroreceptor stimulation in patients with symptomatic and silent myocardial ischemia. Cardiovascular Research, 28, 515–518. First citation in articleCrossrefGoogle Scholar

  • Keogh, E. , Witt, G. (2001). Hypoalgesic effect of caffeine in normotensive men and women. Psychophysiology, 38, 886–895. First citation in articleCrossrefGoogle Scholar

  • Klement, W. , Arndt, J.O. (1991). Pain but no temperature sensations are evoked by thermal stimulation of cutaneous veins in man. Neuroscience Letters, 123, 119–122. First citation in articleCrossrefGoogle Scholar

  • McCubbin, J.A. , Bruehl, S. (1994). Do endogenous opioids mediate the relationship between blood pressure and pain sensitivity in normotensives?. Pain, 57, 63–67. First citation in articleCrossrefGoogle Scholar

  • Millan, M.J. (2002). Descending control of pain. Progress in Neurobiology, 66, 355–474. First citation in articleCrossrefGoogle Scholar

  • Molhoek, P.G. , Wesseling, K.H. , Arntzenius, A.C. , Settels, J.J. , v. Vollenhoven, E. , Weeda, H. Et al. (1983). Initial results of noninvasive measurement of finger blood pressure according to Penaz. Automedica, 4, 241–246. First citation in articleGoogle Scholar

  • Morris, M.C. , Scherr, P.A. , Hebert, L.E. , Bennett, D.A. , Wilson, R.S. , Glynn, R.J. et al. (2002). Association between blood pressure and cognitive function in a biracial community population of older persons. Neuroepidemiology, 21, 123–130. First citation in articleCrossrefGoogle Scholar

  • Myers, C.D. , Robinson, M.E. , Riley, J.L. , Sheffield, D. (2001). Sex, gender, and blood pressure: Contributions to experimental pain report. Psychosomatic Medicine, 63, 545–550. First citation in articleCrossrefGoogle Scholar

  • Ng, P.H. , Walters, W.A. (1992). The effect of chronic maternal hypotension during pregnancy. Australian and New Zealand Journal of Obstetrics and Gynecology, 32, 14–16. First citation in articleCrossrefGoogle Scholar

  • Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113. First citation in articleCrossrefGoogle Scholar

  • Pickering, T.G. , Blank, S.G. (1989). The measurement of blood pressure. In N. Schneiderman, S.M. Weiss, P. Kaufman (Eds.), Handbook of research methods in cardiovascular behavioral medicine (pp. 69–79). New York: Plenum. First citation in articleCrossrefGoogle Scholar

  • Pilgrim, J.A. , Stansfield, S. , Marmot, M. (1992). Low blood pressure, low mood?. British Medical Journal, 304, 75–78. First citation in articleCrossrefGoogle Scholar

  • Qiu, C. , Winblad, B. , Fratiglioni, L. (2005). The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurology, 4, 487–499. First citation in articleCrossrefGoogle Scholar

  • Randich, A. , Maixner, W. (1984). Interactions between cardiovascular and pain regulatory systems. Neuroscience and Biobehavioral Reviews, 8, 343–367. First citation in articleCrossrefGoogle Scholar

  • Rau., H. , Brody, S. , Larbig, W. , Pauli, P. , Vohringer, M. , Harsch, B. et al. (1994). Effects of PRES baroreceptor stimulation on thermal and mechanical pain threshold in borderline hypertensives and normotensives. Psychophysiology, 31, 480–485. First citation in articleCrossrefGoogle Scholar

  • Rau, H. , Elbert, T. (2001). Psychophysiology of arterial baroreceptors and the etiology of hypertension. Biological Psychology, 57, 179–201. First citation in articleCrossrefGoogle Scholar

  • Ren, K. , Randich, A. , Gebhard, G.F. (1988). Vagal afferent modulation of a nociceptive reflex in rats: Involvement of spinal opioid and monoamine receptors. Brain Research, 446, 285–294. First citation in articleCrossrefGoogle Scholar

  • Riley, J.L. , Robinson, M.E. , Wise, E.A. , Myers, C.D. , Fillingim, R.B. (1998). Sex differences in the perception of noxious experimental stimuli: A meta-analysis. Pain, 74, 181–187. First citation in articleCrossrefGoogle Scholar

  • Rosengren, A. , Tibblin, G. , Wilhelmsen, L. (1993). Low systolic blood pressure and self-perceived well-being in middle-aged men. British Medical Journal, 306, 243–246. First citation in articleCrossrefGoogle Scholar

  • Ruitenberg, A. , Skoog, I. , Ott, A. , Aevarsson, O. , Witteman, J.C. , Lernfelt, B. et al (2001). Blood pressure and risk of dementia: Results from the Rotterdam study and the Gothenburg H-70 study. Dementia and Geriatric Cognitive Disorders, 12, 33–39. First citation in articleCrossrefGoogle Scholar

  • Schandry, R. (1999). Die Verbesserung der subjektiven Befindlichkeit bei orthostatischer Hypotonie unter dem Einfluss blutdrucksteigernder Therapie [Improvement of subjective state in orthostatic hypotension due to blood pressure enhancing treatment]. Medizinische Welt, 50, 160–165. First citation in articleGoogle Scholar

  • Stegagno, L. , Angrilli, A. , Costa, M. , Palomba, D. (1996). Deficit cognitivi e ipotensione arteriosa: Un’ indagine cronopsycofisiologica [Cognitive deficits and arterial hypotension: a chrono-psychophysiological approach]. Giornale Italiano di Psicologia, 23, 837–859. First citation in articleGoogle Scholar

  • von Zerssen, D. (1976). Klinische Selbstbeurteilungs-Skalen aus dem Münchner Psychiatrischen Informations-System (PSYCHIS) München. Die Befindlichkeitsskala [Clinical self-rating scales from the Munich Psychiatric Information System (PSYCHIS). The Scale on Subjective State]. Weinheim: Beltz. First citation in articleGoogle Scholar

  • Waldstein, S.R. , Giggey, P.P. , Thayer, J.F. , Zonderman, A.B. (2005). Nonlinear relations of blood pressure to cognitive function: The Baltimore Longitudinal Study of Aging. Hypertension, 45, 374–379. First citation in articleCrossrefGoogle Scholar

  • Warland, J. , McCutcheon, H. (2002). Is there an association between maternal hypotension and poor pregnancy outcome? A review of contemporary literature. Australian College of Midwives Incorporated, 14, 22–26. First citation in articleGoogle Scholar

  • Weisz, N. , Schandry, R. , Jacobs, A. , Mialet, J. , Duschek, S. (2002). Early contingent negative variation of the EEG and attentional flexibility are reduced in hypotension. International Journal of Psychophysiology, 45, 253–260. First citation in articleCrossrefGoogle Scholar

  • Wessely, S. , Nickson, J. , Cox, B. (1990). Symptoms of low blood pressure: A population study. British Medical Journal, 301, 362–365. First citation in articleCrossrefGoogle Scholar

  • WHO. (1978). Arterial hypertension. Technical report series no. 628. Genova: World Health Organization. First citation in articleGoogle Scholar

  • Wolff, B.B. (1984). Methods of testing pain mechanisms in normal men. In D. Wall, R. Melzack (Eds.), Textbook of pain (pp. 186–194). Edinburgh: Churchill Livingstone. First citation in articleGoogle Scholar

  • Zamir, N. , Segal, M. (1979). Hypertension-induced analgesia: Changes in pain sensitivity in experimental hypertensive rats. Brain Research, 160, 170–173. First citation in articleCrossrefGoogle Scholar

  • Zamir, N. , Shuber, E. (1980). Altered pain perception in hypertensive humans. Brain Research, 201, 471–474. First citation in articleCrossrefGoogle Scholar

  • Zamir, N. , Simantow, R. , Segal, M. (1980). Pain sensitivity and opioid activity in genetically and experimentally hypertensive rats. Brain Research, 184, 299–310. First citation in articleCrossrefGoogle Scholar