Skip to main content
Original Communication

Lateralized Processing of Faces

The Role of Features, Configurations, and Familiarity

Published Online:https://doi.org/10.1024/1421-0185/a000140

We investigated the lateralized processing of featural and configural information in face recognition in two divided visual field studies. In Experiment 1, participants matched the identity of a cue face containing either featural (scrambled faces) or configural (blurred faces) information with an intact test face presented subsequently either in the right visual field (RVF) or in the left visual field (LVF). Unilateral presentation was controlled by monitoring eye movements. The results show an advantage of the left hemisphere (LH) over the right hemisphere (RH) for featural processing and a specialization of the RH for configural compared to featural processing. In Experiment 2, we focused on configural processing and its relationship to familiarity. Either learned or novel test faces were presented in the LVF or the RVF. Participants recognized learned faces better when presented in the LVF than in the RVF, suggesting that the RH has an advantage in the recognition of learned faces. Because the recognition of familiar faces relies strongly on configural information (Buttle & Raymond, 2003), we argue that the advantage of the RH over the LH in configural processing is a function of familiarity.

References

  • Baird, L. M., Burton, A. M. (2008). The bilateral advantage for famous faces: Interhemispheric communication or competition? Neuropsychologia, 46, 1581–1587. doi 10.1016/j.neuropsychologia.2008.01.001 First citation in articleCrossrefGoogle Scholar

  • Bar, M., Aminoff, E., Ishai, A. (2008). Famous faces activate contextual associations in the parahippocampal cortex. Cerebral Cortex, 18, 1233–1238. doi 10.1093/cercor/bhm170 First citation in articleCrossrefGoogle Scholar

  • Bartlett, J. C., Searcy, J. H., Abdi, H. (2003). What are the routes to face recognition? In M. A. Peterson, G. Rhodes (Eds.), Perception of faces, objects, and scenes: Analytic and holistic processes (pp. 21–62). New York: Oxford University Press. First citation in articleGoogle Scholar

  • Bombari, D., Mast, F. W., Lobmaier, J. S. (2009). Featural, configural, and holistic face-processing strategies evoke different scan patterns. Perception, 38, 1508–1521. doi 10.1068/p6117 First citation in articleCrossrefGoogle Scholar

  • Bourne, V. J. (2006). The divided visual field paradigm: Methodological considerations. Laterality, 11, 373–393. doi 10.1080/ 13576500600633982 First citation in articleCrossrefGoogle Scholar

  • Bourne, V. J., Hole, G. J. (2006). Lateralized repetition priming for familiar faces: Evidence for asymmetric interhemispheric cooperation. The Quarterly Journal of Experimental Psychology, 59, 1117–1133. doi 10.1080/02724980543000150 First citation in articleCrossrefGoogle Scholar

  • Bourne, V. J., Vladeanu, M., Hole, G. J. (2009). Lateralized repetition priming for featurally and configurally manipulated familiar faces: Evidence for differentially lateralized processing mechanisms. Laterality, 14, 287–299. doi 10.1080/ 13576500802383709 First citation in articleCrossrefGoogle Scholar

  • Boutsen L., Humphreys, G. W., Praamstra P., Warbrick, T. (2006). Comparing neural correlates of configural processing in faces and objects: An ERP study of the Thatcher illusion. Neuroimage, 32, 352–367. doi 10.1016/j.neuroimage.2006.03.023 First citation in articleCrossrefGoogle Scholar

  • Bruyer, R., Stroot, C. (1984). Lateral differences in face processing: Task and modality effects. Cortex, 20, 377–390. First citation in articleCrossrefGoogle Scholar

  • Butler, S. H., Harvey, M. (2005). Does inversion abolish the left chimeric face processing advantage? Neuroreport, 16, 1991–1993. doi 10.1097/00001756-200512190-00004 First citation in articleCrossrefGoogle Scholar

  • Buttle, H., Raymond, J. E. (2003). High familiarity enhances visual change detection for face stimuli. Perception & Psychophysics, 65, 1296–1306. doi 10.3758/BF03194853 First citation in articleCrossrefGoogle Scholar

  • Cabeza, R., Kato, T. (2000). Features are also important: Contributions of featural and configural processing to face recognition. Psychological Science, 11, 429–433. doi 10.1111/1467-9280.00283 First citation in articleCrossrefGoogle Scholar

  • Carbon, C. C., Grüter, T., Weber, J. E., Lueschow, A. (2007). Faces as objects of nonexpertise: Processing of Thatcherised faces in congenital prosopagnosia. Perception, 36, 1635–1645. doi 10.1068/p5467 First citation in articleCrossrefGoogle Scholar

  • Collishaw, S. M., Hole, G. J. (2000). Featural and configurational processes in the recognition of faces of different familiarity. Perception, 29, 893–909. doi 10.1068/p2949 First citation in articleCrossrefGoogle Scholar

  • Cooper, T. J., Harvey, M., Lavidor, M., Schweinberger, S. R. (2007). Hemispheric asymmetries in image-specific and abstractive priming of famous faces: Evidence from reaction times and event-related brain potentials. Neuropsychologia, 45, 2910–2921. doi 10.1016/j.neuropsychologia.2007.06.005 First citation in articleCrossrefGoogle Scholar

  • Fink, G. R., Halligan, P. W., Marshall, J. C., Frith, C. D., Frackowiak, R. S., Dolan, R. J. (1996). Where in the brain does visual attention select the forest and the trees? Nature, 382, 626–628. doi 10.1038/382626a0 First citation in articleCrossrefGoogle Scholar

  • Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P., Gore, J. C. (1999). Activation of the middle fusiform “face area” increases with expertise in recognizing novel objects. Nature Neuroscience, 2, 568–573. doi 10.1038/9224 First citation in articleCrossrefGoogle Scholar

  • Goffaux, V., Hault, B., Michel, C., Vuong, Q. C., Rossion, B. (2005). The respective role of low and high spatial frequencies in supporting configural and featural processing of faces. Perception, 34, 77–86. doi 10.1068/p5370 First citation in articleCrossrefGoogle Scholar

  • Haxby, J. B., Ungerleider, L. G., Clark, V. P., Schouten, J. L., Hoffman, E. A., Martin, A. (1999). The effect of face inversion on activity in human neural systems for face and object perception. Neuron, 22, 189–199. doi 10.1016/s0896-6273(00)80690-x First citation in articleCrossrefGoogle Scholar

  • Heinze, H. J., Hinrichs, H., Scholz, M., Burchert, W., Mangun, G. R. (1998). Neural mechanisms of global and local processing: A combined PET and ERP study. Journal of Cognitive Neuroscience, 10, 485–498. doi 10.1162/089892998562898 First citation in articleCrossrefGoogle Scholar

  • Hellige, J. B., Corwin, W. H., Jonsson, J. E. (1984). Effects of perceptual quality on the processing of human faces presented to the left and right cerebral hemispheres. Journal of Experimental Psychology: Human Perception and Performance, 10, 90–107. doi 10.1037/0096-1523.10.1.90 First citation in articleCrossrefGoogle Scholar

  • Hilger, L. A., Koenig, O. (1991). Separable mechanisms in face processing: Evidence from hemispheric specialization. Journal of Cognitive Neuroscience, 3, 42–58. doi 10.1162/jocn. 1991.3.1.42 First citation in articleCrossrefGoogle Scholar

  • Hsiao, J. H., Shieh, D., Cottrell, G. W. (2008). Convergence of the visual field split: Hemispheric modeling of face and object recognition. Journal of Cognitive Neuroscience, 20, 2298–2307. doi 10.1162/jocn.2008.20162 First citation in articleCrossrefGoogle Scholar

  • Ishai, A., Schmidt, C. F., Boesiger, P. (2005). Face perception is mediated by a distributed cortical network. Brain Research Bulletin, 67, 87–93. doi 10.1016/j.brainresbull.2005.05.027 First citation in articleCrossrefGoogle Scholar

  • Ivry, R. B., Robertson, L. C. (1998). The two sides of perception. Cambridge, MA: MIT. First citation in articleGoogle Scholar

  • Kampf, M., Nachson, I., Babkoff, H. (2002). A serial test of the laterality of familiar face recognition. Brain and Cognition, 50, 35–50. doi 10.1016/S0278-2626(02)00008-8 First citation in articleCrossrefGoogle Scholar

  • Kimchi, R. (1992). Primacy of holistic processing and global/local paradigm: A critical review. Psychological Bulletin, 112, 24–38. doi 10.1037/0033-2909.112.1.24 First citation in articleCrossrefGoogle Scholar

  • Lamb, M. R., Robertson, L. C., Knight, R. T. (1990). Component mechanisms underlying the processing of hierarchically organized patterns: Inferences from patients with unilateral cortical lesions. Journal of Experimental Psychology: Learning, Memory and Cognition, 16, 471–483. doi 10.1037/0278-7393.16.3.471 First citation in articleGoogle Scholar

  • Leder, H., Carbon, C. C. (2006). Face-specific configural processing of relational information. The British Journal of Psychology, 97, 19–29. doi 10.1348/000712605X54794 First citation in articleCrossrefGoogle Scholar

  • Leehey, S., Carey, S., Diamond, R., Cahn, A. (1978). Upright and inverted faces: The right hemisphere knows the difference. Cortex, 14, 411–419. First citation in articleCrossrefGoogle Scholar

  • Letourneau, S. M., Mitchell, T. V. (2008). Behavioral and ERP measures of holistic face processing in a composite task. Brain & Cognition, 67, 234–245. doi 10.1016/j.bandc.2008.01.007 First citation in articleCrossrefGoogle Scholar

  • Lobmaier, J. S., Klaver, P., Loenneker, T., Martin, E., Mast, F. W. (2008). Featural and configural face processing strategies: Evidence from a functional magnetic resonance imaging study. Neuroreport, 19, 287–291. doi 10.1097/WNR.0b013e3282f556fe First citation in articleCrossrefGoogle Scholar

  • Lobmaier, J. S., Mast, F. W. (2007). Perception of novel faces: The parts have it! Perception, 36, 1660–1673. doi 10.1068/p5642 First citation in articleCrossrefGoogle Scholar

  • Marzi, C. A., Berlucchi, G. (1977). Right visual field superiority for accuracy of recognition of famous faces in normals. Neuropsychologia, 15, 751–756. doi 10.1016/0028-3932(77)90005-7 First citation in articleCrossrefGoogle Scholar

  • Maurer, D., O’Craven, K. M., Le Grand, R., Mondloch, C. J., Springer, M. V., Lewis, T. L., Grady, C. L. (2007). Neural correlates of processing facial identity based on features versus their spacing. Neuropsychologia, 45, 1438–1451. doi 10.1016/ j.neuropsychologia.2006.11.016 First citation in articleCrossrefGoogle Scholar

  • Megraya, A. M., Burton, A. M. (2006). Unfamiliar faces are not faces: Evidence from a matching task. Memory & Cognition, 34, 865–876. doi 10.3758/BF03193433 First citation in articleCrossrefGoogle Scholar

  • Mohr, B., Landgrebe, A., Schweinberger, S. R. (2002). Interhemispheric cooperation for familiar but not unfamiliar face processing. Neuropsychologia, 40, 1841–1848. doi 10.1016/S0028-3932(02)00040-4 First citation in articleCrossrefGoogle Scholar

  • Nielson, K. A., Seidenberg, M., Woodard, J. L., Durgerian, S., Zhang, Q., Gross, W., ... Rao, S. M. (2010). Common neural systems associated with the recognition of famous faces and names: An event-related functional-MRI study. Brain and Cognition, 72, 491–498. doi 10.1016/j.bandc.2010.01.006 First citation in articleCrossrefGoogle Scholar

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113. doi 10.1016/0028-3932(71)90067-4 First citation in articleCrossrefGoogle Scholar

  • Palmer, T., Tzeng, O. J. (1990). Cerebral asymmetry in visual attention. Brain and Cognition, 13, 46–58. doi 10.1016/0278-2626(90)90039-Q First citation in articleCrossrefGoogle Scholar

  • Patterson, K., Bradshaw, J. L. (1975). Differential hemispheric mediation of nonverbal visual stimuli. Journal of Experimental Psychology: Human Perception and Performance, 1, 246–52. First citation in articleCrossrefGoogle Scholar

  • Rakover, S. S. (2002). Featural vs. configurational information in faces: A conceptual and empirical analysis. British Journal of Psychology, 93, 1–30. doi 10.1348/000712602162427 First citation in articleGoogle Scholar

  • Rhodes, G. (1985). Lateralized processes in face recognition. British Journal of Psychology, 76, 249–271. First citation in articleCrossrefGoogle Scholar

  • Robertson, L. C., Lamb, M. R., Knight, R. T. (1988). Effects of lesions of temporal-parietal junction on perceptual and attentional processing in humans. Journal of Neuroscience, 8, 3757–3769. First citation in articleCrossrefGoogle Scholar

  • Ross, E. D., Mesulam, M. M. (1979). Dominant language functions of the right hemisphere? Prosody and emotional gesturing. Archives of Neurology, 36, 144–148. doi 10.1001/ archneur.1979.00500390062006 First citation in articleCrossrefGoogle Scholar

  • Rossion, B. (2009). Distinguishing the cause and consequence of face inversion: The perceptual field hypothesis. Acta Psychologica, 132, 300–312. doi 10.1016/j.actpsy.2009.08.002 First citation in articleGoogle Scholar

  • Rossion, B., Dricot, L., Devolder, A., Bodart, J. M., Crommelinck, M., De Gelder, B., Zoontjes, R. (2000). Hemispheric asymmetries for whole-based and part-based face processing in the human fusiform gyrus. Journal of Cognitive Neuroscience, 12, 793–802. doi 10.1162/089892900562606 First citation in articleCrossrefGoogle Scholar

  • Schwaninger, A., Carbon, C. C., Leder, H. (2003). Expert face processing: Specialization and constraints. In G. Schwarzer, H. Leder (Eds.), Development of face processing (pp. 81–97). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Scott, L. S., Nelson, C. A., (2006). Featural and configural face processing in adults and infants: A behavioral and electrophysiological investigation. Perception, 35, 1107–1128. doi 10.1068/ p5493 First citation in articleCrossrefGoogle Scholar

  • Searcy, J. H., Bartlett, J. C. (1996). Inversion and processing of component and spatial-relational information in faces. Journal of Experimental Psychology: Human Perception and Performance, 22, 904–915. doi 10.1037/0096-1523.22.4.904 First citation in articleCrossrefGoogle Scholar

  • Sekuler, A. B., Gaspar, C. M., Gold, J. M., Bennet, P. J. (2004). Inversion leads to quantitative, not qualitative, changes in face perception. Current Biology, 14, 391–396. doi 10.1016/j.cub. 2004.02.028 First citation in articleCrossrefGoogle Scholar

  • Sergent, J. (1985). Influence of task and input factors on hemispheric involvement in face processing. Journal of Experimental Psychology: Human Perception and Performance, 11, 846–861. First citation in articleCrossrefGoogle Scholar

  • Sergent, J., Bindra, D. (1981). Differential hemispheric processing of faces: Methodological considerations and reinterpretation. Psychological Bulletin, 89, 541–554. doi 10.1037/ 0033-2909.89.3.541 First citation in articleCrossrefGoogle Scholar

  • Stuerzel, F., Spillmann, L. (2000). Thatcher illusion: Dependence on angle of rotation. Perception, 29, 937–942. doi 10.1068/p2888 First citation in articleCrossrefGoogle Scholar

  • Tanaka, J. W., Farah, M. J. (1993). Parts and wholes in face recognition. The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 46, 225–245. doi 10.1080/14640749308401045 First citation in articleCrossrefGoogle Scholar

  • Veres-Injac, B., Persike, M. (2009). Recognition of briefly presented familiar and unfamiliar faces. Psihologija, 42, 47–66. doi 10.2298/PSI0901047V First citation in articleCrossrefGoogle Scholar

  • Yovel, G., Yovel, I., Levy, J. (2001). Hemispheric asymmetries for global and local visual perception: Effects of stimulus and task factors. Journal of Experimental Psychology: Human Perception and Performance, 27, 1369–1385. doi 10.1037/0096-1523.27.6.1369 First citation in articleCrossrefGoogle Scholar