Skip to main content
Log in

δ13C of Tree-Ring Lignin as an Indirect Measure of Climate Change

  • Published:
Water, Air and Soil Pollution: Focus

Abstract

High-resolution paleoclimatic data are an essential requirement for testing numerical models of climate change and the global carbon cycle. If the long tree-ring chronologies, originally established for the purpose of dendrochronology, are to be fully exploited as an indirect measure of past climatic variability, additional techniques are required to obtain this information. The determination of the δ13C value of tree-ring cellulose has been used successfully to reconstruct past climates. However, under both aerobic and anaerobic conditions, the polysaccharide components of vascular plants (mainly cellulose and hemicelluloses) are more prone to rapid degradation than lignin. This has serious implications for the use of carbon isotope values of tree-ring cellulose as an indirect measure of past climates. An absolutely dated ring-width chronology was established for oaks (Quercus robur L.) growing at Sandringham Park in eastern England. Carbon isotope values were determined on α-cellulose and `Klason' lignin isolated from annual latewood samples over the period AD 1895–1999. The carbon isotope values of earlywood lignin are correlated with the latewood carbon isotope values of the previous year, supporting the theory that some of the carbon utilised in earlywood synthesis is assimilated in the previous year. The high-frequency variance in the carbon isotope indices of latewood lignin and cellulose is highly correlated with combined July and August environmental variables, indicating that they were formed at similar times. There was no evidence of secondary lignification. These resultsdemonstrate that the determination of carbon isotope values of latewood lignin offers the potential to obtain unambiguous proxy climatic data covering several millennia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, W. T., Bernasconi, S. M., McKenzie, J. A. and Saurer, M.: 1998, ‘Oxygen and carbon isotopic record of climatic variability in tree ring cellulose (Picea abies): An example from central Switzerland (1913-1995)’, J. Geophys. Res. 103, 31,625-31,636.

    Google Scholar 

  • Aykroyd, R. G., Lucy, D., Pollard, A. M., Carter, A. H. C. and Robertson, I.: 2001, ‘Temporal variability in the strength of proxy-climate correlations’, Geophys. Res. Lett. 28, 1559-1562.

    Google Scholar 

  • Barbour, M. M., Andrews, T. J. and Farquhar, G. D.: 2001, ‘Correlations between oxygen isotope ratios of wood constituents of Quercusand Pinussamples from around the world’, Aust. J. Plant Physiol. 28, 335-348.

    Google Scholar 

  • Becker, B., Kromer, B. and Trimborn, P.: 1991, ‘A stable-isotope tree-ring timescale of the Late Glacial/Holocene boundary’, Nature 353, 647-649.

    Google Scholar 

  • Bender, M. M. and Berge, A. J.: 1982, ‘Carbon isotope records in Wisconsin trees’, Tellus 34, 500-504.

    Google Scholar 

  • Benner, R., Fogel, M. L., Sprague, E. K. and Hodson, R. E.: 1987, ‘Depletion of 13C in lignin and its implications for stable carbon isotope studies’, Nature 329, 708-710.

    Google Scholar 

  • Blanchette, R. A.: 2000, ‘A review of microbial deterioration found in archaeological wood from different environments’, Int. Biodeter. Biodegr. 46, 189-204.

    Google Scholar 

  • Borella, S., Leuenberger, M., Saurer, M. and Siegwolf, R.: 1998, ‘Reducing uncertainties in d 13C analysis of tree rings: Pooling, milling and cellulose extraction’, J. Geophys. Res. 103, 19519-19526.

    Google Scholar 

  • Borella, S., Leuenberger, M. and Saurer, M.: 1999, ‘Analysis of d 18O in tree-rings: Wood-cellulose comparison and method dependent sensitivity’, J. Geophys. Res. 104, 19,267-19,273.

    Google Scholar 

  • Boudet, A.: 2000, ‘Lignins and lignification: Selected issues’, Plant Physiol. Biochem. 38, 81-96.

    Google Scholar 

  • Briffa, K. R.: 2000, ‘Annual climate variability in the Holocene: Interpreting the message of ancient trees’,Quat. Sci. Rev. 19, 87-105.

    Google Scholar 

  • Coplen, T.: 1995, ‘Discontinuance of SMOW and PDB’, Nature 375, 285.

    Google Scholar 

  • Craig, H.: 1954, ‘Carbon-13 variations in sequoia rings and the atmosphere’, Science 119, 141-144.

    Google Scholar 

  • Donaldson, L. A.: 2001, ‘Lignification and lignin topochemistry - An ultrastructural view’, Phytochemistry 57, 859-873.

    Google Scholar 

  • Epstein, S., Yapp, C. J. and Hall, J. H.: 1976, ‘The determination of the D/H ratio of nonexchangeable hydrogen in cellulose extracted from aquatic and land plants’, Earth Planet. Sci. Lett. 30, 241-251.

    Google Scholar 

  • Esper, J., Cook, E. R. and Schweingruber, F. H.: 2002, ‘Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability’, Science 295, 2250-2253.

    Google Scholar 

  • Farmer, J. G. and Baxter, M. S.: 1974a, ‘Atmospheric carbon dioxide levels as indicated by the stable isotope record in wood’, Nature 247, 273-275.

    Google Scholar 

  • Farmer, J. G. and Baxter, M. S.: 1974b, ‘Drs Farmer and Baxter reply’, Nature 252, 757.

    Google Scholar 

  • Farquhar, G. D., Ehleringer, J. R. and Hubick, K. T.: 1989, ‘Carbon isotope discrimination and photosynthesis’, Ann. Rev. Plant Physiol. Plant Mol. Biol. 40, 503-537.

    Google Scholar 

  • Fitter, A. H. and Fitter, R. S. R.: 2002, ‘Rapid changes in the flowering time in British plants’, Science 296, 1689-1691.

    Google Scholar 

  • Francey, R. J. and Farquhar, G. D.: 1982, ‘An explanation for the 12C/13C variations in tree-rings’, Nature 29728-31.

    Google Scholar 

  • Freyer, H. D. and Wiesberg, L.: 1974, ‘Dendrochronology and 13C content in atmospheric CO2’, Nature 252, 757.

    Google Scholar 

  • Fritts, H. C.: 1976, Tree Rings and Climate, Academic Press, New York.

    Google Scholar 

  • Gindl, W., Grabner, M. and Wimmer, R.: 2000, ‘The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width’, Trees 14, 409-414.

    Google Scholar 

  • Grantz, D. A.: 1990, ‘Plant response to atmospheric humidity’, Plant Cell Environ. 13, 667-679.

    Google Scholar 

  • Gray, J. and Thompson, P.: 1977, ‘Climatic information from 18O/16O analysis of cellulose, lignin and whole wood from tree rings’, Nature 270, 708-709.

    Google Scholar 

  • Grinsted, M. J.: 1977, ‘A study of the relationship between climate and stable isotope ratios in tree rings’, unpublished Ph.D. Dissertation, University of Waikato.

  • Heaton, T. H. E.: 1999, ‘Spatial, species, and temporal variations in the 13C/12C ratios of C3 plants: Implications for palaeodiet studies’, J. Arch. Sci. 26, 637-649.

    Google Scholar 

  • Hemming, D. L., Switsur, V. R., Waterhouse, J. S., Heaton, T. H. E. and Carter, A. H. C.: 1998, ‘Climate variation and the stable carbon isotope composition of tree-ring cellulose: An intercomparison of Quercus robur, Fagus sylvaticaand Pinus sylvestris’, Tellus 50B, 25-33.

    Google Scholar 

  • Hill, S. A., Waterhouse, J. S., Field, E. M., Switsur, V. R. and Rees, T.: 1995, ‘Rapid recycling of triose phosphates in oak stem tissue’, Plant Cell Environ. 18, 931-936.

    Google Scholar 

  • Huang, Y., Freeman, K. H., Eglinton, T. I. and Street-Perrott, F. A.: 1999, ‘d 13C analyses of individual lignin phenols in Quaternary lake sediments: A novel proxy for deciphering past terrestrial vegetation changes’, Geology 27, 471-474.

    Google Scholar 

  • Keeling, C. D.,Mook,W. G. and Tans, P. P.: 1979, ‘Recent trends in the 13C/12C ratio of atmospheric carbon dioxide’, Nature 277, 121-123.

    Google Scholar 

  • Leavitt, S. W. and Long, A.: 1989, ‘The atmospheric d 13C record as derived from 56 Pinyon trees at 14 sites in the southwestern United States’, Radiocarbon 31, 469-474.

    Google Scholar 

  • Leavitt, S. W. and Long, A.: 1991, ‘Seasonal stable-carbon isotope variability in tree-rings: Possible palaeoenvironmental signals’, Chem. Geol. 87, 59-70.

    Google Scholar 

  • Leuenberger, M., Borella, S., Stocker, T., Saurer, M., Siegwolf, R., Schweingruber, F. and Matyssek, R.: 1998, Stable Isotopes in Tree-rings as Climate and Stress Indicators, VDF, Zurich.

    Google Scholar 

  • Libby, L. M., Pandolfi, L. J., Payton, P. H., Marshall III, J., Becker, B. and Giertz-Sienbenlist, V.: 1976, ‘Isotopic tree thermometers’, Nature 261, 284-288.

    Google Scholar 

  • Lipp, J., Trimborn, P., Fritz, P., Moser, H., Becker, B. and Frenzel, B.: 1991, ‘Stable isotopes in tree ring cellulose and climatic change’, Tellus 43B, 322-330.

    Google Scholar 

  • Loader, N. J., Switsur, V. R. and Field, E. M.: 1995, ‘High resolution stable isotope analysis of tree rings: Implications of ‘microdendroclimatology’ for palaeoenvironmental research’, Holocene 5, 457-460.

    Google Scholar 

  • Loader, N. J., Robertson, I., Barker, A. C., Switsur, V. R. and Waterhouse, J. S.: 1997, ‘A modified method for the batch processing of small whole wood samples to a-cellulose’, Chem. Geol. 136, 313-317.

    Google Scholar 

  • Loader, N. J., Robertson, I. and McCarroll, D.: 2003, ‘Comparison of stable carbon isotope ratios in the whole wood, cellulose and lignin of oak tree-rings’, Palaeogeogr., Palaeoclim., Palaeoecol. 196, 395-407.

    Google Scholar 

  • Manley, G.: 1974, ‘Central England temperatures: Monthly means 1659 to 1973’, Q. J. Royal Met. Soc. 100, 389-405.

    Google Scholar 

  • Mazany, T., Lerman, J. C. and Long, A.: 1980, ‘Carbon-13 in tree-ring cellulose as an indicator of past climates’, Nature 287, 432-435.

    Google Scholar 

  • McCarroll, D., and Pawellek, F.: 2001, ‘Stable carbon isotope ratios of Pinus sylvestrisfrom northern Finland and the potential for extracting a climate signal from long Fennoscandian chronologies’, Holocene 11, 517-526.

    Google Scholar 

  • Ogle, N. and McCormac, F. G.: 1994, ‘High-resolution d 13C measurements of oak show a previously unobserved spring depletion’, Geophys. Res. Lett. 21, 2373-2375.

    Google Scholar 

  • Park, R. and Epstein, S.: 1961, ‘Metabolic fractionation of C13 and C12 in plants’, Plant Physiol. 36, 133-138.

    Google Scholar 

  • Pilcher, J. R.: 1995, ‘Biological considerations in the interpretation of stable isotope ratios in oak tree-rings’, in B. Frenzel, B. Stauffer and M. M. Weiss (eds), Paläoklimaforschung15, European Science Foundation, Strasbourg, France, pp. 157-161.

    Google Scholar 

  • Pilcher, J. R., Baillie,M. G. L., Schmidt, B. and Becker, B.: 1984, ‘A 7272-year tree-ring chronology for western Europe’, Nature 312, 150-152.

    Google Scholar 

  • Robertson, I.: 1998, ‘Tree response to environmental change’, unpublished Ph.D. Dissertation, University of Cambridge.

  • Robertson, I., Pollard, A. M., Heaton, T. H. E. and Pilcher, J. R.: 1996, ‘Seasonal changes in the isotopic composition of oak cellulose’, in J. S. Dean, D. M. Meko and T. W. Swetnam (eds), Tree Rings, Environment and Humanity: Proceedings of the International Conference, Tucson, Arizona, 17-21 May 1994, Radiocarbon, Tucson, Arizona, pp. 617-628.

    Google Scholar 

  • Robertson, I., Switsur, V. R., Carter, A. H. C., Barker, A. C., Waterhouse, J. S., Briffa, K. R. and Jones, P. D.: 1997, ‘Signal strength and climate relationships in the 13C/12C ratios of tree-ring cellulose from oak in east England’, J. Geophys. Res. 102,19,507-19,516.

    Google Scholar 

  • Schleser, G. H., Helle, G., Lücke, A. and Vos, H.: 1999a, ‘Isotope signals as climate proxies: The role of transfer functions in the study of terrestrial archives’, Quat. Sci. Rev. 18, 927-943.

    Google Scholar 

  • Schleser G. H., Frielingsdorf, J. and Blair, A.: 1999b, ‘Carbon isotope behaviour in wood and cellulose during artificial aging’, Chem. Geol. 158, 121-130.

    Google Scholar 

  • Sofer, Z.: 1980, ‘Preparation of carbon dioxide for stable carbon isotope analysis of petroleum fractions’, Anal. Chem. 52, 1389-1391.

    Google Scholar 

  • Sparks, T. H. and Carey, P. D.: 1995, ‘The response of species to climate over two centuries: An analysis of the Marsham phenological record, 1736-1947’, J. Ecol. 83, 321-329.

    Google Scholar 

  • Sparks, T. H., Carey, P. D. and Combes, J.: 1997, ‘First leafing dates of trees in Surrey between 1947 and 1996’, London Nat. 76,15-20.

    Google Scholar 

  • Spiker, E. C. and Hatcher, P. G.: 1987, ‘The effects of early diagenesis on the chemical and stable carbon isotopic composition of wood’, Geochim. Cosmochim. Acta 51, 1385-1391.

    Google Scholar 

  • Tans, P. P., De Jong, A. F. M. and Mook, W. G.: 1978, ‘Chemical pretreatment and radial flow of 14C in tree rings’, Nature 271, 234-235.

    Google Scholar 

  • Technical Association of the Pulp and Paper Industry (TAPPI): 1988, ‘Test Method T222 om-83’, Atlanta, U.S.A..

  • Turney, C. M., Berringer, J., Hunt, J. E. and McGlone, M. S.: 1999, ‘Estimating leaf to air vapour pressure deficit from terrestrial plant d 13C’, J. Quat. Sci. 14, 437-442.

    Google Scholar 

  • van Bergen, P. F. and Poole, I.: 2002, ‘Stable carbon isotopes of wood: A clue to palaeoclimate?’, Palaeogeogr., Palaeoclim., Palaeoecol. 182, 31-45.

    Google Scholar 

  • Vogel, J. C.: 1980, ‘Fractionation of the carbon isotopes during photosynthesis’, in Sitzungsberichte der Heidelberger Akademie der Wissenschaften,Springer-Verlag, Berlin, pp. 111-135.

    Google Scholar 

  • Wilson, A. T. and Grinsted, M. J.: 1977, ‘12C/13C in cellulose and lignin as palaeothermometers’, Nature 265, 133-135.

    Google Scholar 

  • Wilson, A. T. and Grinsted, M. J.: 1978, ‘The possibilities of deriving past climate information from stable isotope studies on tree rings’, in B. W. Robinson (ed.), Stable Isotopes in the Earth Sciences, Department of Scientific and Industrial Research Bulletin, Science Information Division, pp. 61-66.

  • Yapp, C. J. and Epstein, S.: 1977, ‘Climatic implications of D/H ratios of meteoric water over North America (9500-22,000 B.P.) as inferred from ancient wood cellulose C-H hydrogen’, Earth Planet. Sci. Lett. 34, 333-350.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Robertson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robertson, I., Loader, N.J., McCarroll, D. et al. δ13C of Tree-Ring Lignin as an Indirect Measure of Climate Change. Water, Air, & Soil Pollution: Focus 4, 531–544 (2004). https://doi.org/10.1023/B:WAFO.0000028376.06179.af

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:WAFO.0000028376.06179.af

Navigation