Skip to main content
Log in

NO oxidation kinetics on iron zeolites: influence of framework type and iron speciation

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Zeolites having MFI, FER and *BEA topology were loaded with iron using solid state cation exchange method. The Fe:Al atomic ratio was 1:4. The zeolites were characterized using nitrogen adsorption, FTIR and DR UV–Vis–NIR spectroscopy. The catalytic activity in NO oxidation and the occurrence of NO x adsorption was determined in a fixed-bed mini reactor using gas mixtures containing oxygen and water in addition to NO and NO2 and temperatures of 200–350 °C. Under these reaction conditions, the NO x adsorption capacity of these iron zeolites was negligible. The kinetic data could be fitted with a LHHW rate expression assuming a surface reaction between adsorbed NO and adsorbed O2. The kinetic analysis revealed the occurrence of strong reaction inhibition by adsorbed NO2. FER and MFI zeolites were more active than *BEA type zeolite. MFI zeolite is most active but suffers most from NO2 inhibition of the reaction rate. FTIR and UV–Vis spectra suggest that isolated Fe3+ cations and binuclear Fe3+ complexes are active NO oxidation sites. Compared to the isolated Fe3+ species, the binuclear complexes abundantly present in the MFI zeolite seem to be most sensitive to poisoning by NO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Held, A. König, T. Richter and L. Puppe, SAE Paper 900496 (1990).

  2. Martens J.A., Cauvel A., Francis A., Hermans C., Jayat F., Remy M., Keung M., Lievens J. and Jacobs P.A. (1998). Angew. Chem, Int. Ed. Eng. 37: 1901

    Article  CAS  Google Scholar 

  3. Sasaki M., Hamada H., Kintaichi Y. and Ito T. (1992). Catal. Lett. 15: 297

    Article  CAS  Google Scholar 

  4. Kikuchi E., Ogura M., Aratani N., Sugiura Y., Hiromoto S. and Yogo K. (1996). Catal. Today 27: 35

    Article  CAS  Google Scholar 

  5. Iwamoto M., Zengyo T., Hernandez A. and Araki H. (1998). Appl. Catal. B 17: 259

    Article  CAS  Google Scholar 

  6. Adelman B. and Sachtler W. (1997). Appl. Catal. B 14: 1

    Article  CAS  Google Scholar 

  7. Misono M., Hirao Y. and Yokoyama C. (1997). Catal. Today 38: 157

    Article  CAS  Google Scholar 

  8. Yokoyama C. and Misono M. (1994). J. Catal. 15: 9

    Article  Google Scholar 

  9. Martens J.A., Cauvel A., Jayat F., Vergne S. and Jobson E. (2001). Appl. Catal. B 29: 299

    Article  CAS  Google Scholar 

  10. Remy M.J. and Poncelet G. (1995). J. Phys. Chem. 99: 773

    Article  CAS  Google Scholar 

  11. Kremer S.P.B., Kirschhock C.E.A., Tielen M., Collignon F., Grobet P.J., Jacobs P.A. and Martens J.A. (2002). Adv. Funct. Mater. 12: 286

    Article  CAS  Google Scholar 

  12. Giles R., Cant N.W., Kögel M., Turek T. and Trimm D.L. (2000). Appl. Catal. B 25: 75

    Article  Google Scholar 

  13. Reid R.C., Prauznitz J.H. and Shervood T.K. (1987). The Properties of Gases and Liquids, 4th edn. McGraw-Hill, New York

    Google Scholar 

  14. Smith J.M. (1981). Chemical Engineering Kinetics, 3rd edn. McGraw-Hill, Tokyo

    Google Scholar 

  15. Froment G.F. and Bischoff K.B. (1990). Chemical Reactors Analysis and Design, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  16. Scheinost A.C., Chavernas A., Barrón V. and Torrent J. (1998). Clay. Clay. Miner. 46: 528

    Article  CAS  Google Scholar 

  17. Sherman D.M. (1985). Phys. Chem. Miner. 12: 161

    Article  CAS  Google Scholar 

  18. Sherman D.M. and Waite T.D. (1985). Amer. Mine. 70: 1262

    CAS  Google Scholar 

  19. Maturano P., Drozdová L., Kogelbauer A. and Prins R. (2000). J. Catal. 192: 236

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brosius, R., Habermacher, D., Martens, J.A. et al. NO oxidation kinetics on iron zeolites: influence of framework type and iron speciation. Topics in Catalysis 30, 333–339 (2004). https://doi.org/10.1023/B:TOCA.0000029771.92159.da

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TOCA.0000029771.92159.da

Keywords:

Navigation