Skip to main content
Log in

Proteomics of chloroplast envelope membranes

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Proteomics is a very powerful approach to link the information contained in sequenced genomes, like Arabidopsis, to the functional knowledge provided by studies of plant cell compartments, such as chloroplast envelope membranes. This review summarizes the present state of proteomic analyses of highly purified spinach and Arabidopsis envelope membranes. Methods targeted towards the hydrophobic core of the envelope allow identifying new proteins, and especially new transport systems. Common features were identified among the known and newly identified putative envelope inner membrane transporters and were used to mine the complete Arabidopsis genome to establish a virtual plastid envelope integral protein database. Arabidopsis envelope membrane proteins were extracted using different methods, that is, chloroform/methanol extraction, alkaline or saline treatments, in order to retrieve as many proteins as possible, from the most to the less hydrophobic ones. Mass spectrometry analyses lead to the identification of more than 100 proteins. More than 50% of the identified proteins have functions known or very likely to be associated with the chloroplast envelope. These proteins are (a) involved in ion and metabolite transport, (b) components of the protein import machinery and (c) involved in chloroplast lipid metabolism. Some soluble proteins, like proteases, proteins involved in carbon metabolism or in responses to oxidative stress, were associated with envelope membranes. Almost one third of the newly identified proteins have no known function. The present stage of the work demonstrates that a combination of different proteomics approaches together with bioinformatics and the use of different biological models indeed provide a better understanding of chloroplast envelope biochemical machinery at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adessi C, Miège C, Albrieux C and Rabilloud T (1997) Twodimensional electrophoresis of membrane proteins: a current challenge for immobilized pH gradients. Electrophoresis 18: 127–135

    Article  PubMed  CAS  Google Scholar 

  • Awai K, Maréchal E, Block MA, Brun D, Masuda T, Shimada H, Takamiya K, Ohta H and Joyard J (2001) Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. ProcNatl Acad Sci USA 98: 10960–10965

    Article  CAS  Google Scholar 

  • Babadzhanova MP, Babadzhanova MA and Aliev KA (2002) Free and membrane-bound multienzyme complexes with Calvin cycle activities in cotton leaves. Russ J Plant Physiol 49: 592–597

    Article  CAS  Google Scholar 

  • Barbier-Brygoo H, Gaymard F, Rolland N and Joyard J (2001) Strategies to identify transport systems in plants. Trends Plant Sci 6: 577–585

    Article  PubMed  CAS  Google Scholar 

  • Blée E (2002) Impact of phyto-oxylipins in plant defense. Trends Plant Sci 7: 315–322

    Article  PubMed  Google Scholar 

  • Blée E and Joyard J (1996) Envelope membranes from spinach chloroplasts are a site of metabolism of fatty acid hydroperoxides. Plant Physiol 110: 445–454

    PubMed  Google Scholar 

  • Block MA, Dorne AJ, Joyard J and Douce R (1983) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. I – Electrophoresis and immunochemical analyses. J Biol Chem 258: 13273–13280

    PubMed  CAS  Google Scholar 

  • Bolter B, Soll J, Hill K, Hemmler R and Wagner R (1999) A rectifying ATP-regulated solute channel in the chloroplastic outer envelope from pea. EMBO J 18: 5505–5516

    Article  PubMed  CAS  Google Scholar 

  • Brix J, Rudiger S, Bukau B, Schneider-Mergener J and Pfanner N (1999) Distribution of binding sequences for the mitochondrial import receptors Tom20, Tom22, and Tom70 in a presequencecarrying preprotein and a non-cleavable preprotein. J Biol Chem 274: 16522–16530

    Article  Google Scholar 

  • Cline K, Andrews J, Mersey B, Newcomb EH and Keegstra K (1981) Separation and characterization of inner and outer envelope membranes of pea chloroplasts. Proc Natl Acad Sci USA 78: 3595–3599

    Article  PubMed  CAS  Google Scholar 

  • Costes C, Burghoffer C, Joyard J, Block M and Douce R (1979) Occurrence and biosynthesis of violaxanthin in isolated spinach chloroplast envelope. FEBS Lett 103: 17–21

    Article  CAS  Google Scholar 

  • Daram P, Brunner S, Rausch C, Steiner C, Amrhein N and Bucher M (1999) Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis. Plant Cell 11: 2153–2166

    Article  PubMed  CAS  Google Scholar 

  • Diekert K, Kispal G, Guiard B and Lill R (1999) An internal targeting signal directing proteins into the mitochondrial intermembrane space. Proc Natl Acad Sci USA 96: 11752–11757

    Article  PubMed  CAS  Google Scholar 

  • Dormann P, Balbo I and Benning C (1999) Arabidopsis galactolipid biosynthesis and lipid trafficking mediated by DGD1. Science 284: 2181–2184

    Article  PubMed  CAS  Google Scholar 

  • Douce R and Joyard J (1990) Biochemistry and function of the plastid envelope. Annu Rev Cell Biol 6: 173–216

    Article  PubMed  CAS  Google Scholar 

  • Douce R and Joyard J (1996) Biosynthesis of thylakoid membrane lipids. In: Ort DR and Yocum CF (eds), Advances in Photosynthesis, Vol 4, Oxygenic Photosynthesis: the Light Reactions, pp 69–101, Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Emanuelsson O, Nielsen H and von Heijne G (1999) Chloro P, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8: 978–984

    Article  PubMed  CAS  Google Scholar 

  • Ferro M, Seigneurin-Berny D, Rolland N, Chapel A, Salvi D, Garin J and Joyard J (2000) Organic solvent extraction as a versatile procedure to identify hydrophobic chloroplast membrane proteins. Electrophoresis 21: 3517–3526

    Article  PubMed  CAS  Google Scholar 

  • Ferro M, Salvi D, Rivière-Rolland H, Vermat T, Seigneurin-Berny D, Grunwald D, Garin J, Joyard J and Rolland N (2002) Integral membrane proteins of the chloroplast envelope: identification and subcellular localization of new transporters. Proc Natl Acad Sci USA 99: 11487–11492

    Article  PubMed  CAS  Google Scholar 

  • Ferro M, Salvi D, Brugière S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J and Rolland N (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 2: 325–345

    PubMed  CAS  Google Scholar 

  • Flügge UI (2000) Transport in and out of plastids: does the outer envelope membrane control the flow? Trends Plant Sci 5: 135–137

    Article  PubMed  Google Scholar 

  • Flügge UI, Fischer K, Gross A, Sebald W, Lottspeich F and Eckerskorn C (1989) The triose phosphate-3-phosphoglyceratephosphate translocator from spinach chloroplasts: nucleotide sequence of a full-length cDNA clone and import of the in vitro synthesized precursor protein into chloroplasts. EMBO J 8: 39–46

    PubMed  Google Scholar 

  • Froehlich JE, Wilkerson CG, Ray WK, McAndrew RS, Osteryoung KW, Gage DA and Phinney BS (2003) Proteomic study of the Arabidopsis thaliana chloroplastic envelope membrane utilizing alternatives to traditional two-dimensional electrophoresis. J Proteome Res 2: 413–425

    Article  PubMed  CAS  Google Scholar 

  • Hemmerlin A, Hoeffler JF, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M and Bach TJ (2003) Crosstalk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem 278: 26666–26676

    Article  PubMed  CAS  Google Scholar 

  • Hiltbrunner A, Bauer J, Alvarez-Huerta M and Kessler F (2001) Protein translocon at the Arabidopsis outer chloroplast membrane. Biochem Cell Biol 79: 629–635

    Article  PubMed  CAS  Google Scholar 

  • Issakidis-Bourguet E, Mouaheb N, Meyer Y and Miginiac-Maslow M (2001) Heterologous complementation of yeast reveals a new putative function for chloroplast m-type thioredoxin. Plant J 25: 127–135

    Article  PubMed  CAS  Google Scholar 

  • Jackson-Constan D, Akita M, Keegstra K (2001) Molecular chaperones involved in chloroplast protein import. Biochim Biophys Acta 1541: 102–113

    Article  PubMed  CAS  Google Scholar 

  • Jager-Vottero P, Dorne AJ, Jordanov J, Douce R and Joyard J (1997) Redox chains in chloroplast envelope membranes: spectroscopic evidence for the presence of electron carriers, including iron– sulfur centers. Proc Natl Acad Sci USA 94: 1597–1602

    Article  PubMed  CAS  Google Scholar 

  • Jarvis P and Soll J (2002) Toc, tic, and chloroplast protein import. Biochim Biophys Acta 1590: 177–189

    Article  PubMed  CAS  Google Scholar 

  • Joyard J, Grossman A, Bartlett SG, Douce R and Chua NH (1982) Characterization of envelope membrane polypeptides from spinach chloroplasts. J Biol Chem 257: 1095–1101

    PubMed  CAS  Google Scholar 

  • Joyard J, Block M, Pineau B, Albrieux C and Douce R (1990) Envelope membranes from mature spinach chloroplasts contain a NADPH: protochlorophyllide reductase on the cytosolic side of the outer membrane. J Biol Chem 265: 21820–21827

    PubMed  CAS  Google Scholar 

  • Joyard J, Teyssier E, Miège C, Berny-Seigneurin D, Maréchal E, Block MA, Dorne AJ, Rolland N, Ajlani G and Douce R (1998) The biochemical machinery of plastid envelope membranes. Plant Physiol 118: 715–723

    Article  PubMed  CAS  Google Scholar 

  • Koo AJ and Ohlrogge JB (2002) The predicted candidates of Arabidopsis plastid inner envelope membrane proteins and their expression profiles. Plant Physiol 130: 823–836

    Article  PubMed  Google Scholar 

  • Leustek T and Saito K (1999) Sulfate transport and assimilation in plants. Plant Physiol 120: 637–644

    Article  PubMed  CAS  Google Scholar 

  • Menzlaff E and Flugge UI (1993) Purification and functional reconstitution of the 2-oxoglutarate/malate translocator from spinach chloroplasts. Biochim Biophys Acta 1147: 13–18

    Article  PubMed  CAS  Google Scholar 

  • Miège C, Maréchal E, Shimojima M, Awai K, Block MA, Ohta H, Takamiya K, Douce R and Joyard J (1999) Biochemical and topological properties of type A MGDG synthase, a spinach chloroplast envelope enzyme catalyzing the synthesis of both prokaryotic and eukaryotic MGDG. Eur J Biochem 265: 990–1001

    Article  PubMed  Google Scholar 

  • Miras S, Salvi D, Ferro M, Grunwald D, Garin J, Joyard J and Rolland N (2002) Non-canonical transit peptide for import into the chloroplast. J Biol Chem 277: 47770–47778

    Article  PubMed  CAS  Google Scholar 

  • Moller SG, Kunkel T and Chua NH (2001) A plastidic ABC protein involved in intercompartmental communication of light signaling. Genes Dev 15: 90–103

    Article  PubMed  CAS  Google Scholar 

  • Motohashi R, Ito T, Kobayashi M, Taji T, Nagata N, Asami T, Yoshida S, Yamaguchi-Shinozaki K and Shinozaki K (2003) Functional analysis of the 37 kDa inner envelope membrane polypeptide in chloroplast biogenesis using a Ds-tagged Arabidopsis pale-green mutant. Plant J 34: 719–731

    Article  PubMed  CAS  Google Scholar 

  • Mourioux G and Douce R (1979) Sulfate transport across the limiting double membrane or envelope, of spinach chloroplasts. Biochimie 61: 1283–1292

    PubMed  CAS  Google Scholar 

  • Muller F and Frentzen M (2001) Phosphatidylglycerophosphate synthases from Arabidopsis thaliana. FEBS Lett 509: 298–302

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux P and Karpinski S (2002) Signal transduction in response to excess light: getting out of the chloroplast. Curr Opin Plant Biol 5: 43–48

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus HE and Wagner R (2000) Solute pores, ion channels, and metabolite transporters in the outer and inner envelope membranes of higher plant plastids. Biochim Biophys Acta 1465: 307–323

    Article  PubMed  CAS  Google Scholar 

  • Ortiz-Lopez A, Chang HC and Bush DR (2001) Amino acid transporters in plants. Biochim Biophys Acta 1465: 275–280

    Google Scholar 

  • Pineau B, Dubertret G, Joyard J and Douce R (1986) Fluorescence properties of the envelope membranes from spinach chloroplasts. Detection of protochlorophyllide. J Biol Chem 261: 9210–9215

    PubMed  CAS  Google Scholar 

  • Ravanel S, Cherest H, Jabrin S, Grunwald D, Surdin-Kerjan Y, Douce R and Rebeillé F (2001) Tetrahydrafolate biosynthesis in plants: molecular and functional characterization of dihydrofolate synthetase and three isoforms of folypolyglutamate synthetase in Arabidopsis thaliana. Proc Natl Acad Sci USA 98: 15360–15365

    Article  PubMed  CAS  Google Scholar 

  • Rolland N, Dorne AJ, Amoroso G, Sultemeyer DF, Joyard J and Rochaix JD (1997) Disruption of the plastid ycf10 open reading frame affects uptake of inorganic carbon in the chloroplast of Chlamydomonas. EMBO J 16: 6713–6726

    Article  PubMed  CAS  Google Scholar 

  • Schleiff E, Eichacker LA, Eckart K, Becker T, Mirus O, Stahl T and Soll J (2003) Prediction of the plant beta-barrel proteome: a case study of the chloroplast outer envelope. Protein Sci 12: 748–759

    Article  PubMed  CAS  Google Scholar 

  • Schnell DJ, Kessler F and Blobel G (1994) Isolation of components of the chloroplast protein import machinery. Science 266: 1007–1012

    PubMed  CAS  Google Scholar 

  • Schnurr JA, Shockey JM, de Boer GJ and Browse JA (2002) Fatty acid export from the chloroplast. Molecular characterization of a major plastidial acyl-coenzyme. A synthetase from Arabidopsis. Plant Physiol 129: 1700–1709

    Article  PubMed  CAS  Google Scholar 

  • Schwacke R, Schneider A, Van Der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flügge UI and Kunze R (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131: 16–26

    Article  PubMed  CAS  Google Scholar 

  • Seigneurin-Berny D, Rolland N, Garin J and Joyard J (1999) Differential extraction of hydrophobic proteins from chloroplast envelope membranes: a subcellular-specific proteomic approach to identify rare intrinsic membrane proteins. Plant J 19: 217–228

    Article  PubMed  CAS  Google Scholar 

  • Soll J (2002) Protein import into chloroplasts. Curr Opin Plant Biol 5: 529–535

    Article  PubMed  CAS  Google Scholar 

  • Soll J, Schultz G, Joyard J, Douce R and Block MA (1985) Localization and synthesis of prenylquinones in isolated outer and inner envelope membranes from spinach chloroplasts. Arch Biochem Biophys 238: 290–299

    Article  PubMed  CAS  Google Scholar 

  • Sveshnikova N, Grimm R, Soll J and Schleiff E (2000) Topology studies of the chloroplast protein import channel Toc75. Biol Chem 381: 687–693

    Article  PubMed  CAS  Google Scholar 

  • Swiezewska E, Dallner G, Andersson B and Ernster L (1993) Biosynthesis of ubiquinone and plastoquinone in the endoplasmic reticulum-golgi membranes of spinach leaves. J Biol Chem 268: 1494–1499

    PubMed  CAS  Google Scholar 

  • Teyssier E, Block MA, Douce R and Joyard J (1996) Is E37, a major polypeptide of the inner membrane from plastid envelope, an Sadenosyl methionine-dependent methyltransferase? Plant J 10: 903–912

    Article  PubMed  CAS  Google Scholar 

  • Thelen JJ and Ohlrogge JB (2002) The multisubunit acetyl-CoA carboxylase is strongly associated with the chloroplast envelope through non-ionic interactions to the carboxyltransferase subunits. Arch Biochem Biophys 400: 245–257

    Article  PubMed  CAS  Google Scholar 

  • Tusna'dy GE and Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17: 849–850

    Article  Google Scholar 

  • Versaw WK and Harrison MK (2002) A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell 14: 1751–1766

    Article  PubMed  CAS  Google Scholar 

  • Villarejo A, Rolland N, Martinez F and Sultemeyer DF (2001) new chloroplast envelope carbonic anhydrase activity is induced during acclimation to low inorganic carbon concentrations in Chlamydomonas reinhardtii. Planta 213: 286–295

    Article  PubMed  CAS  Google Scholar 

  • Wang HL, Postier BL and Burnap RL (2002) Polymerase chain reaction-based mutageneses identify key transporters belonging to multigene families involved in Na+ and pH homeostasis of Synechocystis sp. PCC 6803. Mol Microbiol 44: 1493–1506

    Article  PubMed  CAS  Google Scholar 

  • Wanke M, Dallner G and Swiezewska E (2000) Subcellular localization of plastoquinone and ubiquinone synthesis in spinach cells. Biochim Biophys Acta 1463: 188–194

    Article  PubMed  CAS  Google Scholar 

  • Ward JM (2001) Identification of novel families of membrane proteins from the model plant Arabidopsis thaliana. Bioinformatics 17: 560–563

    Article  PubMed  CAS  Google Scholar 

  • Weber A, Servaites JC, Geiger DR, Kofler H, Hille D, Gröner F, Hebbeker U and Flügge UI (2000) Identification, purification and molecular cloning of a plastidic glucose translocator. Plant Cell 12: 787–801

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Hartel H, Wada H, Hagio M, Yu B, Eakin C and Benning C (2002) The pgp1 mutant locus of Arabidopsis encodes a phosphatidylglycerolphosphate synthase with impaired activity. Plant Physiol 129: 594–604

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolland, N., Ferro, M., Seigneurin-Berny, D. et al. Proteomics of chloroplast envelope membranes. Photosynthesis Research 78, 205–230 (2003). https://doi.org/10.1023/B:PRES.0000006891.12416.6c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PRES.0000006891.12416.6c

Navigation