Skip to main content
Log in

Stabilization of Proteins in Dry Powder Formulations Using Supercritical Fluid Technology

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Therapeutic proteins have become essential in the treatment of many diseases. Their formulation in dry form is often required to improve their stability. Traditional freeze-drying or spray-drying processes are often harmful to labile proteins and could be replaced by supercritical fluid (SCF) drying to produce particles with defined physicochemical characteristics in a mild single step. A survey of the current SCF drying processes for proteins is presented to give insight into the effect of SCF drying on protein stability and to identify issues that need further investigation. Methods used for drying aqueous and organic protein solutions are described. In particular, effects of process and formulation parameters on particle formation and protein stability are discussed. Although SCF methodology for drying proteins is still in its infancy, it can provide a serious alternative to existing drying methods for stabilizing proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. C. Manning, K. Patel, and R. T. Borchardt. Stability of protein pharmaceuticals. Pharm. Res. 6:903–918 (1989).

    PubMed  Google Scholar 

  2. J. F. Carpenter and M. C. Manning. Rational Design of Stable Protein Formulations, Theory and Practice, Kluwer Academic/ Plenum Publishers, New York, 2002.

    Google Scholar 

  3. F. Franks. Freeze-drying of bioproducts: putting principles into practice. Eur. J. Pharm. Biopharm. 45:221–229 (1998).

    PubMed  Google Scholar 

  4. M. J. Pikal. Freeze-drying of proteins. Part I: process design. 3(8): 18–27 (1990).

    Google Scholar 

  5. M. J. Pikal. Freeze-drying of proteins. Part II: pormulation selection. 3(9):26–30 (1990).

    Google Scholar 

  6. W. Wang. Lyophilization and development of solid protein pharmaceuticals. Int. J. Pharm. 203:1–60 (2000).

    PubMed  Google Scholar 

  7. R. B. Gupta, and P. Chattopadhyay. Method of forming nano-particles and microparticles of controllable size using supercritical fluids and ultrasound. US Patent No. 20020000681 (2002).

  8. A. K. Dillow, F. Dehghani, J. S. Hrkach, N. R. Foster, and R. Langer. Bacterial inactivation by using near-and supercritical carbon dioxide. Proc. Natl. Acad. Sci. USA 96:10344–10348 (1999).

    PubMed  Google Scholar 

  9. S. D. Yeo, G. B. Lim, P. G. Debenedetti, and H. Bernstein. Formation of microparticulate protein powders using a super-critical fluid antisolvent. Biotechnol. Bioeng. 41:341–346 (1993).

    Google Scholar 

  10. N. Elvassore, A. Bertucco, and P. Caliceti. Production of insulin-loaded poly(ethylene glycol)/poly(l-lactide) (PEG/PLA) nano-particles by gas antisolvent techniques. J. Pharm. Sci. 90:1628–1636 (2001).

    PubMed  Google Scholar 

  11. N. Elvassore, A. Bertucco, and P. Caliceti. Production of protein-loaded polymeric microcapsules by compressed CO2 in a mixed solvent. Ind. Eng. Chem. Res. 40:795–800 (2001).

    Google Scholar 

  12. I. Ribeiro Dos Santos, J. Richard, B. Pech, C. Thies, and J. P. Benoit. Microencapsulation of protein particles within lipids using a novel supercritical fluid process. Int. J. Pharm. 242:69–78 (2002).

    PubMed  Google Scholar 

  13. P. Caliceti, S. Salmaso, N. Elvassore, and A. Bertucco. Effective release from PEG/PLA nano-particles produced by compressed gas anti-solvent precipitation techniques. J. Controlled Release 94:195–205 (2004).

    Google Scholar 

  14. E. Reverchon. Supercritical antisolvent precipitation of micro-and nano-particles. J Supercrit Fluids 15:1–21 (1999).

    Google Scholar 

  15. M. Mukhopadhyay. Natural Extracts Using Supercritical Carbon Dioxide, CRC Press LLC, Boca Raton, 2000.

    Google Scholar 

  16. R. E. Sievers, B. M. Hyberston, and B. N. Hansen. Methods and apparatus for drug delivery using supercritical solutions, WOPatent No. 9317665 (1993).

  17. P. M. Gallagher, M. P. Coffey, V. J. Krukonis, and N. Klasutis. Gas antisolvent recrystallization: new process to recrystallize compounds insoluble in supercritical fluids. ACS Symp Ser. 406: 334–354 (1989).

    Google Scholar 

  18. R. Thiering, F. Dehghani, and N. R. Foster. Micronization of model proteins using compressed carbon dioxide, Proceedings of the 5th International Symposium on Supercritical Fluids, Atlanta, 2000.

  19. H.-S. Byun, N.-H. Kim, and C. Kwak. Measurements and mod-eling of high-pressure phase behavior of binary CO2-amides systems. Fluid Phase Equilib 208:53–68 (2003).

    Google Scholar 

  20. S. Palakodaty and P. York. Phase behavioral effects on particle formation processes using supercritical fluids. Pharm. Res. 16: 976–985 (1999).

    PubMed  Google Scholar 

  21. N. R. Foster, H. L. Regtop, F. Dehghani, R. T. Bustami, and H.-K. Chan. Synthesis of small particles, WO Patent No. 0245690 (2002).

  22. H. B. Bull and K. Breese. Interaction of alcohols with proteins. Biopolymers 17:2121–2131 (1978).

    Google Scholar 

  23. M. Jackson and H. H. Mantsch. Beware of proteins in DMSO. Biochim. Biophys. Acta 1078:231–235 (1991).

    PubMed  Google Scholar 

  24. N. Elvassore, A. Bertucco, and P. Caliceti. Production of protein-polymer micro-capsules by supercritical anti-solvent techniques, Proceedings of the 5th International Symposium on Supercritical Fluids, Atlanta, 2000.

  25. K. L. Toews, R. M. Shrool, C. M. Wai, and N. G. Smart. pH-defining equilibrium between water and supercritical CO2. Influence of SFE of organics and metal chelates. Anal. Chem. 67:4040–4043 (1995).

    Google Scholar 

  26. D. P. Nesta, J. S. Elliott, and J. P. Warr. Supercritical fluid pre-cipitation of recombinant human immunoglobulin from aqueous solutions. Biotechnol. Bioeng. 67:457–464 (2000).

    PubMed  Google Scholar 

  27. S. P. Sellers, G. S. Clark, R. E. Sievers, and J. F. Carpenter. Dry powders of stable protein formulations from aqueous solutions prepared using supercritical CO2-assisted aerosolization. J. Pharm. Sci. 90:785–797 (2001).

    PubMed  Google Scholar 

  28. F. E. Wubbolts. Supercritical crystallisation: volatile components as (anti-)solvents. Ph.D. Thesis, TU Delft, Delft, 2000, pp. 227.

    Google Scholar 

  29. J. Jung, F. Leboeuf, and M. Perrut. Preparation of inhalable protein particles by SCF-emulsion drying, Proceedings of the 6th International Symposium on Supercritical Fluids, Vol. 3, Versailles, France, 2003, pp. 1837–1842.

    Google Scholar 

  30. M. van de Weert, W. E. Henninck, and W. Jiskoot. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm. Res. 17:1159–1167 (2000).

    PubMed  Google Scholar 

  31. D. J. Gilbert, S. Palakodaty, R. Sloan, and P. York. Particle engineering for pharmaceutical applications-A process scale up, Proceedings of the 5th International Symposium on Supercritical Fluids, Atlanta, 2000.

  32. P. Chattopadhyay and R. B. Gupta. Protein nanoparticles formation by supercritical antisolvent with enhanced mass transfer. AIChE J. 48:235–244 (2002).

    Google Scholar 

  33. S. Mawson, S. Kanakia, and K. P. Johnston. Coaxial nozzle for control of particle morphology in precipitation with a compressed fluid antisolvent. J. Appl. Polym. Sci. 64:2105–2118 (1997).

    Google Scholar 

  34. M. H. Hanna and P. York. Methods and apparatus for the formation of particles. US Patent No. 6440337 (2002).

  35. G. Del Re, M. Putrignano, G. Di Giacomo, and C. Di Palma. Apparatus and method for micron and submicron particle for-mation especially for proteins of pharmaceutical interest, WO Patent No. 0268107 (2002).

  36. S. Mawson. The formation and characterization of polymeric materials precipitated by CO2-based spray processes (compressed fluid, RESS, PCA, flocculation, carbon dioxide), University of Texas, Austin, TX, 1996, p. 283.

    Google Scholar 

  37. R. T. Bustami, H. K. Chan, T. Sweeney, F. Dehghani, and N. R. Foster. Generation of fine powders of recombinant human deoxyribonuclease using the aerosol solvent extraction system. Pharm. Res. 20:2028–2035 (2003).

    PubMed  Google Scholar 

  38. H. C. Pellikaan and F. E. Wubbolts. Nozzle construction for particle formation using supercritical anti solvent precipitation, Proceedings of the 6th International Symposium on Supercritical Fluids, Vol. 3, Versailles, France, 2003, pp. 1765–1770.

    Google Scholar 

  39. H. Todo, K. Lida, H. Okamoto, and K. Danjo. Improvement of insulin absorption from intratracheally administrated dry powder prepared by supercritical carbon dioxide process. J. Pharm. Sci. 92:2475–2486 (2003).

    PubMed  Google Scholar 

  40. N. R. Foster, F. Dehghani, R. T. Bustami, and H.-K. Chan. Generation of lysozyme-lactose powders using the ASES process, Proceedings of the 6th International Symposium on Supercritical Fluids, Vol. 3, Versailles, France, 2003, pp. 1831–1836.

    Google Scholar 

  41. J. Jung, J.-Y. Clavier, and M. Perrut. Gram to kilogram scale-up of supercritical anti-solvent process, Proceedings of the 6th Inter-national Symposium on Supercritical Fluids, Vol. 3, Versailles, France, 2003, pp. 1683–1688.

    Google Scholar 

  42. R. Thiering, F. Dehghani, and N. R. Foster. Current issues relating to anti-solvent micronisation techniques and their extension to industrial scales. J Supercritic Fluids 21:159–177 (2001).

    Google Scholar 

  43. R. E. Sievers and U. Karst. Methods for fine particle formation. US Patent No. 5639441 (1997).

  44. R. E. Sievers, B. A. Miles, S. P. Sellers, P. D. Milewski, and K. D. Kusek. New process for manufacture of 1-micron spherical drug particles by CO2-assisted nebulization of aqueous solutions, Proceedings of Respiratory Drug Delivery VI, South Carolina, 1998, pp. 417–419.

    Google Scholar 

  45. R. E. Sievers, E. T. S. Huang, J. A. Villa, J. K. Kawamoto, M. M. Evans, and P. R. Brauer. Low-temperature manufacturing of fine pharmaceutical powders with supercritical fluid aerosolization in a bubble dryer. Pure Appl. Chem. 73:1299–1303 (2001).

    Google Scholar 

  46. R. E. Sievers, E. T. S. Huang, J. A. Villa, T. R. Walsh, H. V. Meresman, C. D. Liang, and S. P. Cape. Rapid gentle drying using dense carbon dioxide to form fine dry powders, Proceedings of Respiratory Drug Delivery VIII, Tucson, Arizona, 2002, pp. 675–677.

    Google Scholar 

  47. J. Jung and M. Perrut. Particle design using supercritical fluids: Literature and patent survey. J Supercrit Fluids 20:179–219 (2001).

    Google Scholar 

  48. J. W. Mullin. Crystallization, Oxford Butterworth-Heinemann, 1993.

    Google Scholar 

  49. R. Thiering, F. Dehghani, A. Dillow, and N. R. Foster. The influence of operating conditions on the dense gas precipitation of model proteins. J. Chem. Technol. Biotechnol. 75:29–41 (2000).

    Google Scholar 

  50. G. Muhrer and M. Mazzotti. Precipitation of lysozyme nanoparticles from dimethyl sulfoxide using carbon dioxide as antisolvent. Biotechnol. Prog. 19:549–556 (2003).

    PubMed  Google Scholar 

  51. M. A. Winters, B. L. Knutson, P. G. Debenedetti, H. G. Sparks, T. M. Przybycien, C. L. Stevenson, and S. J. Prestrelski. Precipitation of proteins in supercritical carbon Dioxide. J. Pharm. Sci. 85:586–594 (1996).

    PubMed  Google Scholar 

  52. S. Moshashaee, M. Bisrat, R. T. Forbes, H. Nyqvist, and P. York. Supercritical fluid processing of proteins. I: Lysozyme precipita-tion from organic solution. Eur. J. Pharm. Sci. 11:239–245 (2000).

    PubMed  Google Scholar 

  53. P. G. Debenedetti, G. B. Lim, and R. K. Prud'homme. Formation of protein microparticles by antisolvent precipitation, EP Patent No. 542314 (1993).

  54. J. W. Tom, G. B. Lim, P. G. Debenedetti, and R. K. Prud'homme. Applications of supercritical fluids in the controlled release of drugs. ACS Symp Ser. 514:238–257 (1993).

    Google Scholar 

  55. S. Moshashaee, M. Bisrat, R. T. Forbes, E. A. Quinn, H. Nyqvist, and P. York. Supercritical fluid processing of proteins: Iysozyme precipitation from aqueous solution. J. Pharm. Pharmacol. 55: 185–192 (2003).

    PubMed  Google Scholar 

  56. R. T. Bustami, H.-K. Chan, F. Dehghani, and N. R. Foster. Generation of microparticles of proteins for aerosol delivery using high pressure modified carbon dioxide. Pharm. Res. 17:1360–1366 (2000).

    PubMed  Google Scholar 

  57. R. T. Bustami and H.-K. Chan. Generation of protein micro-particles using high pressure modified carbon dioxide, Proceedings of the 5th International Symposium on Supercritical Fluids, Atlanta, 2000.

  58. J. D. Andya, Y.-F. Maa, H. R. Costantino, P.-A. Nguyen, N. Dasovich, T. D. Sweeney, C. C. Hsu, and S. J. Shire. The effect of formulation excipients on protein stability and aerosol performance of spray-dried powders of a recombinant humanized anti-IgE monoclonal antibody. Pharm. Res. 16:350–358 (1999).

    PubMed  Google Scholar 

  59. M. Gentile, C. Di Palma, and M. C. Cesta. Supercritical fluids processing in preparation of protein microparticles and their stabilization, WO Patent No. 0335673 (2003).

  60. M.-L. Andersson, C. Boissier, A. M. Juppo, and A. Larsson. Incorporation of drugs in carrier matrixes, WO 9952507 (1999).

  61. J. F. Carpenter, M. Pikal, B. S. Chang, and T. W. Randolph. Rational design of stable lyophilized protein formulations: Some practical advice. Pharm. Res. 14:969–975 (1997).

    PubMed  Google Scholar 

  62. S.-D. Yeo, P. G. Debenedetti, S. Y. Patro, and T. M. Przybycien. Secondary structure characterization of microparticulate insulin powders. J. Pharm. Sci. 83:1651–1656 (1994).

    PubMed  Google Scholar 

  63. M. A. Winters, P. G. Debenedetti, J. Carey, H. G. Sparks, S. U. Sane, and T. M. Przybycien. Long-term and high-temperature storage of supercritically-processed microparticulate protein powders. Pharm. Res. 14:1370–1378 (1997).

    PubMed  Google Scholar 

  64. R. A. Rajewski, B. Subramaniam, W. K. Snaveley, and F. Niu. Precipitation of proteins from organic solutions to form micron-sized protein particles, WO Patent No. 0235941 (2002).

  65. W. K. Snavely, B. Subramaniam, R. A. Rajewski, and M. R. Defelippis. Micronization of insulin from halogenated alcohol solution using supercritical carbon dioxide as an antisolvent. J. Pharm. Sci. 91:2026–2039 (2002).

    PubMed  Google Scholar 

  66. R. T. Forbes, R. Sloan, I. Kibria, M. E. Hollowood, G. O. Humphreys, and P. York. Production of stable protein particles: a comparison of freeze, spray and supercritical drying, Proceedings of the World Congress on Particle Technology 3, Brighton, UK, 1998.

  67. R. Sloan, M. E. Hollowood, G. O. Humphreys, W. Ashraf, and P. York. Supercritical fluid processing: Preparation of stable protein particles, Proceedings of the 5th Meeting on Supercritical Fluids, Nice, France, 1998, pp. 301–306.

  68. M. L. Gilbert and M. E. Paulaitis. Gas-liquid equilibrium for ethanol-water-carbon dioxide mixtures at elevated pressures. J. Chem. Eng. Data 31:296–298 (1986).

    Google Scholar 

  69. S. Takishima, K. Saiki, K. Arai, and S. Saito. Phase equilibria of CO2-C2H5OH-H2O system. J. Chem. Eng. of Japan. 19:48–56 (1986).

    Google Scholar 

  70. S. Yao, Y. Guan, and Z. Zhu. Investigation of phase equilibrium for ternary systems containing ethanol, water and carbon dioxide at elevated pressures. Fluid Phase Equilib 99:249–259 (1994).

    Google Scholar 

  71. S. D. Yeo, P. G. Debenedetti, M. Radosz, and H. W. Schmidt. Supercritical antisolvent process for substituted para-linked aro-matic polyamides: phase equilibrium and morphology study. Macromolecules 26:6207–6210 (1993).

    Google Scholar 

  72. D. J. Dixon, K. P. Johnston, and R. A. Bodmeier. Polymeric materials formed by precipitation with a compressed fluid anti-solvent. AIChE J. 39:127–139 (1993).

    Google Scholar 

  73. B. W. Müller, and W. Fischer. Verfahren zur Herstellung einer mindestens einen Wirkstoff und einen Träger umfassenden Zubereitung. DE Patent No. 3744329 (1989).

  74. M. H. Hanna and P. York. Methods and apparatus for particle formation, Methods and apparatus for particle formation. US Patent No. 5851453 (1998).

  75. P. Chattopadhyay and R. B. Gupta. Production of antibiotic nanoparticles using supercritical CO2 as antisolvent with enhanced mass transfer. Ind. Eng. Chem. Res. 40:3530–3539 (2001).

    Google Scholar 

  76. N. Ventosa, S. Sala, J. Veciana, J. Torres, and J. Llibre. De-pressurization of an expanded liquid organic solution (DELOS): a new procedure for obtaining submicron-or micron-sized crystalline particles. Cryst. Growth Des. 1:299–303 (2001).

    Google Scholar 

  77. R. Thiering, F. Dehghani, A. Dillow, and N. R. Foster. Solvent effects on the controlled dense gas precipitation of model proteins. J. Chem. Technol. Biotechnol. 75:42–53 (2000).

    Google Scholar 

  78. G. Del Re and G. Di Giacomo. Microparticles production from aqueous solutions using gas antisolvent process, Proceedings of the 8th Meeting on Supercritical Fluids, Bordeaux, France, 2002, pp. 85–90.

  79. M. Sarkari. Solvent engineering of compressed and supercritical fluid solvents for bioprocessing applications, Ph.D. Thesis, University of Kentucky, Lexington, KY, 2000, pp. 192.

    Google Scholar 

  80. M. Sarkari, I. Darrat, and B. L. Knutson. CO2 and fluorinated solvent-based technologies for protein microparticle precipitation from aqueous solutions. Biotechnol. Prog. 19:448–454 (2003).

    PubMed  Google Scholar 

  81. R. Sloan, M. Tservistas, M. E. Hollowood, L. Sarup, G. O. Humphreys, P. York, W. Ashraf, and M. Hoare. Controlled particle formation of biological material using supercritical fluids, Proceedings of the 6th Meeting on Supercritical Fluids, Nottingham, UK, 1999, pp. 169-174.

  82. J. Carlfors and R. Ghaderi. Method for the preparation of particles by extraction and precipitation of supercritical solutions, WO Patent No. 0056439 (2000).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jovanović, N., Bouchard, A., Hofland, G.W. et al. Stabilization of Proteins in Dry Powder Formulations Using Supercritical Fluid Technology. Pharm Res 21, 1955–1969 (2004). https://doi.org/10.1023/B:PHAM.0000048185.09483.e7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000048185.09483.e7

Navigation