Skip to main content
Log in

Characterization and Modulation of the Transferrin Receptor on Brain Capillary Endothelial Cells

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The expression level of the transferrin receptor (TfR) on brain capillary endothelial cells (BCECs) and the endocytosis of 125I-transferrin (125I-Tf) by this receptor was investigated. Furthermore, the influence of iron, the iron scavenger deferoxamine mesylate (DFO), astrocytic factors, a GTP-ase inhibitor (tyrphostin-A8, T8), lipopolysaccharide (LPS), and the radical scavenger N-acetyl-L-cysteine (NAC) on the TfR expression was studied to gain insight in the use and optimization of the TfR for drug targeting to the brain.

Methods. Experiments were performed with primary cultured bovine BCECs that were incubated with 125I-Tf at 4°C (to determine binding) or at 37°C (to determine endocytosis) in the absence or presence of the modulators. For full saturation curves in the absence or presence of iron or DFO, analysis was performed with a population approach using NONMEM, allowing us to estimate a single value for affinity (Kd, concentration of 50% receptor occupancy) and separate values for maximum receptor occupancy (Bmax).

Results. On BCECs, the TfR is expressed extracellularly (Bmax of 0.13 fmol/μg cell protein), but also has a large intracellular pool (total Bmax of 1.37 fmol/μg cell protein), and is actively endocytosing Tf via clathrin-coated vesicles. At 4°C, a Kd of 2.38 μg/ml was found, whereas the Kd at 37°C was 5.03 μg/ml. Furthermore, DFO is able to increase both the extracellular as well as the total binding capacity to 0.63 and 3.67 fmol/μg cell protein, respectively, whereas it had no influence on Kd. Bmax at 37°C after DFO preincubation was also increased from 0.90 to 2.31 fmol/μg cell protein. Other modulators had no significant influence on the TfR expression levels, though LPS increased cellular protein concentrations after 2-h preincubation.

Conclusions. The TfR is expressed on BCECs and actively endocytoses Tf, making it a suitable target for drug delivery to the blood-brain barrier and the CNS. DFO up-regulates the TfR expression level, which may influence targeting efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

references

  1. L. L. Rubin and J. M. Staddon. The cell biology of the blood-brain barrier. Annu. Rev. Neurosci. 22:11-28 (1999).

    Google Scholar 

  2. W. M. Pardridge. Blood-brain barrier biology and methodology. J. Neurovirol. 5:556-569 (1999).

    Google Scholar 

  3. W. M. Pardridge. Drug delivery to the brain. J. Cereb. Blood Flow Metab. 17:713-731 (1997).

    Google Scholar 

  4. A. G. de Boer, I. C. van der Sandt, and P. J. Gaillard. The role of drug transporters at the blood-brain barrier. Annu. Rev. Pharmacol. Toxicol. 43:629-656 (2003).

    Google Scholar 

  5. W. Pardridge. Drug targeting, drug discovery, and brain drug development, Brain Drug Targeting: The Future of Brain Drug Development, Press Syndicate of the University of Cambridge, Cambridge, 2001, pp. 1-12.

    Google Scholar 

  6. K. R. Duffy and W. M. Pardridge. Blood-brain barrier transcytosis of insulin in developing rabbits. Brain Res. 420:32-38 (1987).

    Google Scholar 

  7. B. Dehouck, L. Fenart, M. P. Dehouck, A. Pierce, G. Torpier, and R. Cecchelli. A new function for the LDL receptor: transcytosis of LDL across the blood-brain barrier. J. Cell Biol. 138:877-889 (1997).

    Google Scholar 

  8. H. E. de Vries, B. Breedveld, J. Kuiper, A. G. de Boer, T. J. Van Berkel, and D. D. Breimer. High-density lipoprotein and cerebral endothelial cells in vitro: interactions and transport. Biochem. Pharmacol. 50:271-273 (1995).

    Google Scholar 

  9. N. Shi, Y. Zhang, C. Zhu, R. J. Boado, and W. M. Pardridge. Brain-specific expression of an exogenous gene after i.v. administration. Proc. Natl. Acad. Sci. USA 98:12754-12759 (2001).

    Google Scholar 

  10. T. Moos and E. H. Morgan. Transferrin and transferrin receptor function in brain barrier systems. Cell. Mol. Neurobiol. 20:77-95 (2000).

    Google Scholar 

  11. E. Baker and E. H. Morgan. Iron Transport. In J. H. Brock, J. W. Halliday, M. Pippard, and L. W. Powell (eds.), Iron Metabolism in Health and Disease, Saunders, London, 1994, pp. 63-95.

    Google Scholar 

  12. D. Trinder and E. Baker. Transferrin receptor 2: a new molecule in iron metabolism. Int. J. Biochem. Cell Biol. 35:292-296 (2003).

    Google Scholar 

  13. P. J. Gaillard, L. H. Voorwinden, J. L. Nielsen, A. Ivanov, R. Atsumi, H. Engman, C. Ringbom, A. G. de Boer, and D. D. Breimer. Establishment and functional characterization of an in vitro model of the blood-brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. Eur. J. Pharm. Sci. 12:215-222 (2001).

    Google Scholar 

  14. H. M. Nguyen, C. M. Cahill, P. S. McPherson, and A. Beaudet. Receptor-mediated internalization of [3H]-neurotensin in synaptosomal preparations from rat neostriatum. Neuropharm. 42:1089-1098 (2002).

    Google Scholar 

  15. M. Gumbleton, A. G. Abulrob, and L. Campbell. Caveolae: an alternative membrane transport compartment. Pharm. Res. 17:1035-1048 (2000).

    Google Scholar 

  16. J. L. Casey, D. M. Koeller, V. C. Ramin, R. D. Klausner, and J. B. Harford. Iron regulation of transferrin receptor mRNA levels requires iron-responsive elements and a rapid turnover determinant in the 3′ untranslated region of the mRNA. EMBO J. 8:3693-3699 (1989).

    Google Scholar 

  17. L. C. Kuhn. mRNA-protein interactions regulate critical pathways in cellular iron metabolism. Br. J. Haematol. 79:1-5 (1991).

    Google Scholar 

  18. W. van Gelder, M. I. Huijskes-Heins, M. I. Cleton-Soeteman, J. P. van Dijk, and H. G. van Eijk. Iron uptake in blood-brain barrier endothelial cells cultured in iron-depleted and iron-enriched media. J. Neurochem. 71:1134-1140 (1998).

    Google Scholar 

  19. K. R. Bridges and A. Cudkowicz. Effect of iron chelators on the transferrin receptor in K562 cells. J. Biol. Chem. 259:12970-12977 (1984).

    Google Scholar 

  20. C. Q. Xia and W. C. Shen. Tyrphostin-8 enhances transferrin receptor-mediated transcytosis in Caco-2-cells and inreases hypoglycemic effect of orally administered insulin-transferrin conjugate in diabetic rats. Pharm. Res. 18:191-195 (2001).

    Google Scholar 

  21. W. Malorni, U. Testa, G. Rainaldi, E. Tritarelli, and C. Peschle. Oxidative stress leads to a rapid alteration of transferrin receptor intravesicular trafficking. Exp. Cell Res. 241:102-116 (1998).

    Google Scholar 

  22. L. Descamps, M. P. Dehouck, G. Torpier, and R. Cecchelli. Receptor-mediated transcytosis of transferrin through blood-brain barrier endothelial cells. Am. J. Physiol. 270:H1149-H1158 (1996).

    Google Scholar 

  23. T. J. Raub and C. R. Newton. Recycling kinetics and transcytosis of transferrin in primary cultures of bovine brain microvessel endothelial cells. J. Cell. Physiol. 149:141-151 (1991).

    Google Scholar 

  24. J. A. Koenig, J. M. Edwardson, and P. P. Humphrey. Somatostatin receptors in Neuro2A neuroblastoma cells: ligand internalization. Br. J. Pharmacol. 120:52-59 (1997).

    Google Scholar 

  25. E. A. Rutledge, C. A. Mikoryak, and R. K. Draper. Turnover of the transferrin receptor is not influenced by removing most of the extracellular domain. J. Biol. Chem. 266:21125-21130 (1991).

    Google Scholar 

  26. P. J. Gaillard, A. G. de Boer, and D. D. Breimer. Pharmacological investigations on lipopolysaccharide-induced permeability changes in the blood-brain barrier in vitro. Microvasc. Res. 65:24-31 (2003).

    Google Scholar 

  27. W. van Gelder, M. I. Huijskes-Heins, J. P. van Dijk, M. I. Cleton-Soeteman, and H. G. van Eijk. Quantification of different transferrin receptor pools in primary cultures of porcine blood-brain barrier endothelial cells. J. Neurochem. 64:2708-2715 (1995).

    Google Scholar 

  28. R. S. Britton, K. L. Leicester, and B. R. Bacon. Iron toxicity and chelation therapy. Int. J. Hematol. 76:219-228 (2002).

    Google Scholar 

  29. Y. Zhang and W. M. Pardridge. Rapid efflux from brain to blood across the blood-brain barrier. J. Neurochem. 76:1597-1600 (2001).

    Google Scholar 

  30. M. B. Wheeler, R. W. Gelling, S. A. Hinke, B. Tu, R. A. Pederson, F. Lynn, J. Ehses, and C. H. McIntosh. Characterization of the carboxyl-terminal domain of the rat glucose-dependent insulinotropic polypeptide (GIP) receptor. A role for serines 426 and 427 in regulating the rate of internalization. J. Biol. Chem. 274:24593-24601 (1999).

    Google Scholar 

  31. W. M. Pardridge and J. Eisenberg. and J. Yang. Human blood-brain barrier transferrin receptor. Metabolism 36:892-895 (1987).

    Google Scholar 

  32. M. Wilcke and E. Walum. Characterization of leptin intracellular trafficking. Eur. J. Histochem. 44:325-334 (2000).

    Google Scholar 

  33. R. Hallmann, D. L. Savigni, E. H. Morgan, and E. Baker. Characterization of iron uptake from transferrin by murine endothelial cells. Endothelium 7:135-147 (2000).

    Google Scholar 

  34. A. G. de Boer, P. J. Gaillard, and D. D. Breimer. The transference of results between blood-brain barrier cell culture systems. Eur. J. Pharm. Sci. 8:1-4 (1999).

    Google Scholar 

  35. H. Baumann. and J. Gauldie. The acute phase response. Immunol. Today 15:74-80 (1994).

    Google Scholar 

  36. S. Kim and P. Ponka. Effects of interferon-gamma and lipopolysaccharide on macrophage iron metabolism are mediated by nitric oxide-induced degradation of iron regulatory protein 2. J. Biol. Chem. 275:6220-6226 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albertus G. de Boer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visser, C.C., Voorwinden, L.H., Crommelin, D.J.A. et al. Characterization and Modulation of the Transferrin Receptor on Brain Capillary Endothelial Cells. Pharm Res 21, 761–769 (2004). https://doi.org/10.1023/B:PHAM.0000026425.69874.8e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000026425.69874.8e

Navigation