Skip to main content
Log in

Decreased Histamine-Stimulated Phosphoinositide Hydrolysis in the Cerebral Cortex of a Rat Line Selectively Bred for High Alcohol Preference

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This study sheds light on the comparative analysis of agonist-stimulated phosphoinositide (PI) hydrolysis in the cerebral cortex of alcohol-naïve rats from established lines selectively bred for low alcohol preference (LAP) and high alcohol preference (HAP). The effect of histamine (1.0 mM), but neither norepinephrine (0.1 mM) nor carbachol (0.5 mM), on PI hydrolysis was significantly reduced in HAP rats (0.4 ± 5.0 fmol/mg protein [3H]inositol phosphates formed over basal) compared with LAP rats (25.5 ± 10.0 fmol/mg protein). The contents of monoamines (dopamine, norepinephrine, and serotonin) and histamine in the cerebral cortex did not significantly differ between LAP and HAP rats, nor did the contents of their metabolites, except 3-methoxy-4-hydroxyphenylglycol (one of the metabolites of norepinephrine) and N τ-methylhistamine, which was not detected in our system. The histamine stimulatory effect was unchanged in the cerebral cortex of an intact Wistar rat that was treated with intraperitoneal injection of alcohol (1.0 g/kg once per day for 14 days). The results of the current study indicate that the decrease in the histamine effect on PI hydrolysis in HAP rats might be attributed to that particular rat line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

references

  1. WHO 2001. Alcohol dependence. In World health report 2001—mental health: New understanding, new hope, Chapter 3. World Health Organization, Geneva, Switzerland.

    Google Scholar 

  2. Weiss, F. and Porrino, L. J. 2002. Behavioral neurobiology of alcohol addiction: Recent advances and challenges. J. Neurosci. 22:3332–3337.

    Google Scholar 

  3. Phillips, T. J., Brown, K. J., Burkhart-Kasch, S., Wenger, C. D., Kelly, M. A., Rubinstein, M., Grandy, D. K., and Low, M. J. 1998. Alcohol preference and sensitivity are markedly reduced in mice lacking dopamine D2 receptors. Nat. Neurosci. 1:610–615.

    Google Scholar 

  4. Thanos, P. K., Volkow, N. D., Freimuth, P., Umegaki, H., Ikari, H., Roth, G., Ingram, D. K., and Hitzemann, R. 2001. Overexpression of dopamine D2 receptors reduces alcohol self-administration. J. Neurochemistry 78:1094–1103.

    Google Scholar 

  5. Manley, S. J. and Little, H. J. 2003. Enhancement of amphetamine-and cocaine-induced locomotor activity after chronic ethanol administration. J. Pharmacol. Exp. Ther. 281:1330–1339.

    Google Scholar 

  6. Riegel, A. C. and French, E. D. 2002. Abused inhalants and central reward pathways: Electrophysiological and behavioral studies in the rat. Ann. NY Acad. Sci. 965:281–291.

    Google Scholar 

  7. Volkow, N. D., Fowler, J. S., and Wang, G-J. 2003. The addicted human brain: Insights from imaging studies. J. Clin. Invest. 111:1444–1451.

    Google Scholar 

  8. Pandey, S. C., Dubey, M. P., Piano, M. R., Schwertz, D. W., Davis, J. M., and Pandey, G. N. 1993. Modulation of 5-HT1C receptors and phosphoinositide system by ethanol consumption in rat brain and choroid plexus. Eur. J. Pharmacol. 247:81–88.

    Google Scholar 

  9. Pandey, S. C. and Pandey, G. N. 1996. Modulation of serotonin2A/2C receptors and these receptor-linked phosphoinositide system by ethanol. Behav. Brain Res. 73:235–238.

    Google Scholar 

  10. Wallis, C. J., Rezazadeh, S. M., and Lal, H. 1993. Role of serotonin in ethanol abuse. Drug. Dev. Res. 30:178–188.

    Google Scholar 

  11. LeMarquand, D., Pihl, R. O., and Benkelfat, C. 1994. Serotonin and alcohol intake, abuse and dependence: Clinical evidence. Biol. Psychiatry 36:326–337.

    Google Scholar 

  12. Ratsma, J. E., Van der Stelt, O., and Gunning, W. B. 2002. Neurochemical markers of alcoholism vulnerability in humans. Alcohol Alcohol. 37:522–533.

    Google Scholar 

  13. Jope, R. S., Song, L., Grimes, C. A., Pacheco, M. A., Dilley, G. E., Li, X., Meltzer, H. Y., Overholser, J. C., and Stockmeier, C. A. 1998. Selective increases in phosphoinositide signaling activity and G protein levels in postmortem brain from subjects with schizophrenia or alcohol dependence. J. Neurochem. 70:763–771.

    Google Scholar 

  14. Kitanaka, J., Kitanaka, N., and Takemura, M. 2003. Chronic methamphetamine administration reduces histamine-stimulated phosphoinositide hydrolysis in mouse frontal cortex. Biochem. Biophys. Res. Commun. 300:932–937.

    Google Scholar 

  15. Robinson, T. E. and Becker, J. B. 1986. Enduring changes in brain and behavior produced by chronic amphetamine administration: A review and evaluation of animal models of amphetamine psychosis. Brain Res. Rev. 11:157–198.

    Google Scholar 

  16. Robinson, T. E. and Berridge, K. C. 1993. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 18:247–291.

    Google Scholar 

  17. Pierce, R. C. and Kalivas, P. W. 1997. A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res. Rev. 25:192–216.

    Google Scholar 

  18. Javaid, J. I., Pandey, S. C., and Davis, J. M. 1994. The effects of in vivo cocaine on norepinephrine-stimulated phosphoinositide hydrolysis in rat brain. Pharmacol. Biochem. Behav. 47:989–992.

    Google Scholar 

  19. Lintunen, M., Hyytiä, P., Sallmen, T., Karlstedt, K., Tuomisto, L., Leurs, R., Kiianmaa, K., Korpi, E. R., and Panula, P. 2001. Increased brain histamine in an alcohol-preferring rat line, and modulation of ethanol consumption by H3 receptor mechanisms. FASEB J. 10:1096/fj.00–0545fje. (Online) http://www.fasebj.org/cgi/content/abstract/00-0545fjev1.

    Google Scholar 

  20. Nishiguchi, M., Kinoshita, H., Mostofa, J., Taniguchi, T., Ouchi, H., Minami, T., Hatake, K., Utsumi, T., Motomura, H., and Hishida, S. 2002. Different blood acetaldehyde concentration following ethanol administration in a newly developed high alcohol preference and low alcohol preference rat model system. Alcohol Alcohol. 37:9–12.

    Google Scholar 

  21. Kitanaka, J., Maeda, S., and Baba, A. 1993. Cytochalasin B inhibits phosphoinositide hydrolysis in rat hippocampal slices. Neurochem. Res. 18:225–229.

    Google Scholar 

  22. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  23. Kitanaka, N., Kitanaka, J., and Takemura, M. 2003. Behavioral sensitization and alteration in monoamine metabolism in mice after single versus repeated methamphetamine administration. Eur. J. Pharmacol. 474:63–70.

    Google Scholar 

  24. Kasziba, E. 1988. Simultaneous determination of histidine-containing dipeptides, histamine, methylhistamine and histidine by high-performance liquid chromatography. J. Chromatogr. 432:315–320.

    Google Scholar 

  25. Hoshaw, B. A. and Lewis, M. J. 2001. Behavioral sensitization to ethanol in rats: evidence from the Sprague-Dawley strain. Pharmacol. Biochem. Behav. 68:685–690.

    Google Scholar 

  26. Nestby, P., Vanderschuren, L. J. M. J., De Vries, T. J., Hogenboom, F., Wardeh, G., Mulder, A. H., and Schoffelmeer, A. N. M. 1997. Ethanol, like psychostimulants and morphine, causes long-lasting hyperreactivity of dopamine and acetylcholine neurons of rat nucleus accumbens: Possible role in behavioral sensitization. Psychopharmacology 133:69–76.

    Google Scholar 

  27. Brown, E., Kendall, D. A., and Nahorski, S. R. 1984. Inositol phospholipid hydrolysis in rat cerebral cortical slices: I. receptor characterisation. J. Neurochem. 42:1379–1387.

    Google Scholar 

  28. Lancaster, F. E. 1994. Gender differences in the brain: implications for the study of human alcoholism. Alcohol. Clin. Exp. Res. 18:740–746.

    Google Scholar 

  29. Zimatkin, S. M. and Anichtchik, O. V. 1999. Alcohol-histamine interactions. Alcohol Alcohol. 34:141–147.

    Google Scholar 

  30. Belknap, J. K. and Atkins, A. L. 2001. The replicability of QTLs for murine alcohol preference drinking behavior across eight independent studies. Mamm. Genome 12:893–899.

    Google Scholar 

  31. Hoffmann, P. L., Miles, M., Edenberg, H. J., Sommer, W., Tabakoff, B., Wehner, J. M., and Lewohl, J. 2003. Gene expression in brain: A window on ethanol dependence, neuroadaptation, and preference. Alcohol. Clin. Exp. Res. 27:155–168.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Kitanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitanaka, N., Kitanaka, J., Nishiguchi, M. et al. Decreased Histamine-Stimulated Phosphoinositide Hydrolysis in the Cerebral Cortex of a Rat Line Selectively Bred for High Alcohol Preference. Neurochem Res 29, 1431–1436 (2004). https://doi.org/10.1023/B:NERE.0000026408.58336.f8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000026408.58336.f8

Navigation