Skip to main content
Log in

Hypoxia Differentially Reduces GABAA Receptor Density During Embryonic Chick Optic Lobe Development

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

It has been demonstrated that the CNS is severely affected by hypoxic-ischemic insults during the prenatal-perinatal period, including imbalance in excitatory and inhibitory neurotransmitter release. Using a previously developed model of acute normobaric hypoxic hypoxia on chick embryos, we studied alterations observed both on [3H]GABA binding saturation parameters and on lactate concentration on successive embryonic days (ED). While maximal density of GABA binding sites (Bmax) from the low-affinity site was significantly reduced in an age-dependent manner, earlier stages of development (ED12 and 16) proving more vulnerable (ED12: control = 5.48 ± 0.20, hypoxia 3.90 ± 0.39 pmol/mg prot, P < .05; ED16: control = 3.89 ± 0.26, hypoxia = 2.80 ± 0.28 pmol/mg prot, P < .05), ligand affinity (Kd) values and kinetic constants of the high-affinity site remained unaltered. Not unlikely, a physiological hypoxic state prevailing from ED17 up to hatching time rendered the whole embryo less sensitive to an externally induced hypoxic state (ED17: control = 2.93 ± 0.06, hypoxia = 2.38 ± 0.04 pmol/mg prot, P < .05; ED18: control = 2.97 ± 0.12, hypoxia = 2.87 ± 0.27 pmol/mg prot). Lactate levels in chick optic lobe homogenates were constant during development. The increase observed after hypoxic treatment compared to control value was significant at all stages studied, but increased percentage changes proved similar, indicating that all days of development equally perceive externally induced hypoxia. In conclusion, the present work demonstrates that after normobaric hypoxic hypoxia at different embryonic days, the embryo senses the externally induced hypoxic state as from ED12, but the GABAA receptor is differentially affected. It may be speculated that a different subunit composition of GABAA receptor is assembled in order to build a more stable receptor capable of resisting the physiological hypoxic state observed during the last few days before hatching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

references

  1. Mehta, A. K., and Ticky, M. K. 1999. An update on GABAA receptors. Brain Res. Rev. 29:196–217.

    Google Scholar 

  2. Lipton, P. 1999. Ischemic cell death in brain neurons. Physiol. Rev. 79:1431–1568.

    Google Scholar 

  3. Hill, I. E., MacManus, J. P., Rasquinha, I., and Tuor, U. I. 1995. DNA fragmentation indicative of apoptosis following unilateral cerebral hypoxia-ischemia in the neonatal rat. Brain Res. 676:398–403.

    Google Scholar 

  4. Yun, J. K., McCormick, T. S., Judware, R., and Lapetina, E. G. 1997. Cellular adaptive responses to low oxygen tension: Apoptosis and resistance. Neurochem Res. 22:517–521.

    Google Scholar 

  5. Walton, M., Sirimanne, E., Reutelingsperger, C., Williams, C., Gluckman, P., and Dragunow, M. 1997. Annexin V labels apoptotic neurons following hypoxia-ischemia. Neuroreport 8:3871–3875.

    Google Scholar 

  6. Schwartz-Bloom, R. D., Miller, K. A., Evenson, D. A., Crain, B. J., and Nadler, J. V. 2000. Benzodiazepines protect hippocampal neurons from degeneration after transient cerebral ischemia: An ultrastructural study. Neuroscience 98:471–484.

    Google Scholar 

  7. Mallard, E. C., Waldvogel, H. J., Williams, C. E., Faull, R. L., and Gluckman, P. D. 1995. Repeated asphyxia causes loss of striatal projection neurons in the fetal sheep brain. Neuroscience 65:827–836.

    Google Scholar 

  8. Cataltepe, O., Towfighi, J., and Vannucci, R. C. 1996. Cerebrospinal fluid concentrations of glutamate and GABA during perinatal cerebral hypoxia-ischemia and seizures. Brain Res. 709:326–330.

    Google Scholar 

  9. Saransaari, P., and Oja, S. S. 1997. Enhanced GABA release in cell-damaging conditions in the adult and developing mouse hippocampus. Int. J. Dev. Neurosci. 15:163–174.

    Google Scholar 

  10. Saransaari, P., and Oja, S. S. 1998. Release of endogenous glutamate, aspartate, GABA, and taurine from hippocampal slices from adult and developing mice under cell-damaging conditions. Neurochem. Res. 23:563–570.

    Google Scholar 

  11. Meldrum, B., and Garthwaite, J. 1990. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol. Sci. 11:379–387.

    Google Scholar 

  12. Chen, Q., Moulder, K., Tenkova, T., Hardy, K., Olney, J. W., and Romano, C. 1999. Excitotoxic cell death dependent on inhibitory receptor activation. Exp. Neurol. 160:215–225.

    Google Scholar 

  13. Schwartz-Bloom, R. D., and Sah, R. 2001. gamma-Aminobutyric acid(A) neurotransmission and cerebral ischemia. J. Neurochem. 77:353–371.

    Google Scholar 

  14. Fiszer de Plazas, S., and Mitridate de Novara, A. 1990. Effect of diazepam in the low affinity GABA binding sites at different developmental stages of the chick optic lobe. Neurochem. Int. 17:381–387.

    Google Scholar 

  15. Fiszer de Plazas, S., Viapiano, M. S., and Mitridate de Novara, A. 1995. Pentobarbital modulatory effect on GABA binding sites in developing chick optic lobe. Int. J. Dev. Neurosci. 13:783–789.

    Google Scholar 

  16. Gravielle, M. C., de Novara, A. M., and Fiszer de Plazas, S. 1998. GABA-stimulated chloride uptake during avian CNS development: Modulation by neurosteroids. Int. J. Dev. Neurosci. 16:469–475.

    Google Scholar 

  17. Viapiano, M. S., Mitridate de Novara, A., and Fiszer de Plazas, S. 1998. Neurosteroid modulation of GABA binding sites in developing avian central nervous system. Neurochem. Int. 32:291–298.

    Google Scholar 

  18. Rodríguez Gil, D. J., Viapiano, M. S., and Fiszer de Plazas, S. 2000. Acute hypoxic hypoxia transiently reduces GABA(A) binding site number in developing chick optic lobe. Brain Res. Dev. Brain Res. 124:67–72.

    Google Scholar 

  19. Fiszer De Plazas, S., 1982. Ontogenesis of GABA receptor sites in chick embryo cerebellum. Brain Res. 255:263–275.

    Google Scholar 

  20. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, P. J. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  21. Noll, F. 1974. L-(+)-Lactate: Determination with LDH, GPT and NAD. Page 1475, in Methods of Enzymatic Analysis, ed. Bermeyer, H. U. (ed.), Verlag Chemie Weinheim and Academic Press, New York.

    Google Scholar 

  22. Feldman, H. A. 1972. Mathematical theory of complex ligand-binding systems of equilibrium: Some methods for parameter fitting. Anal. Biochem. 48:317–338.

    Google Scholar 

  23. Fiszer de Plazas, S., Gravielle, M. C., Mitridate de Novara, A., and Flores, V. 1993. Methods for removing endogenous factors from CNS membrane preparations: Differences in [3H]GABA binding parameters and developmental-related effects. Neurochem. Res. 18:385–391.

    Google Scholar 

  24. Browner, M., Ferkany, J. W., and Enna, S. J. 1981. Biochemical identification of pharmacologically and functionally distinct GABA receptors in rat brain. J. Neurosci. 1:514–518.

    Google Scholar 

  25. Sieghart, W. 1995. Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. Pharmacol. Rev. 47:181–234.

    Google Scholar 

  26. Newell, J. G., and Dunn, S. M. 2002. Functional consequences of the loss of high affinity agonist binding to gamma-aminobutyric acid type A receptors: Implications for receptor desensitization. J. Biol. Chem. 277:21423–21430.

    Google Scholar 

  27. Romanoff, A. L. 1960 The Avian Embryo: Structure and Functional Development, Macmillan, New York.

    Google Scholar 

  28. Hørby, M., Aulie, A., and Reite, O. B. 1983. Oxygen uptake in fowl eggs incubated in air and pure oxygen. Comp. Biochem. Physiol. A, 74:315–318.

    Google Scholar 

  29. Baumann, R., Haller, E. A., Schoning, U., and Weber, M. 1986. Hypoxic incubation leads to concerted changes of carbonic anhydrase activity and 2.3 DPG concentration of chick embryo red cells. Dev. Biol. 116:548–551.

    Google Scholar 

  30. Chang, Y., Wang, R., Barot, S., and Weiss, D. S. 1996. Stoichiometry of a recombinant GABAA receptor. J. Neurosci. 16:5415–5424.

    Google Scholar 

  31. Backus, K. H., Arigoni, M., Drescher, U., Scheurer, L., Malherbe, P., Mohler, H., and Benson, J. A. 1993. Stoichiometry of a recombinant GABAA receptor deduced from mutation-induced rectification. Neuroreport 5:285–288.

    Google Scholar 

  32. Bateson, A. N., Harvey, R. J., Wisden, W., Glencorse, I. A, Hicks, A. A., Hunt, S. P., Barnard, E. A., and Darlison, M. G. 1991. The chicken GABAA receptor alpha 1 subunit: cDNA sequence and localization of the corresponding mRNA. Brain Res. Mol. Brain Res. 9:333–339.

    Google Scholar 

  33. Harvey, R. J., and Darlison, M. G. 1997. In situ hybridization localization of the GABAA receptor beta 2S-and beta 2L-subunit transcripts reveals cell-specific splicing of alternate cassette exons. Neuroscience 77:361–369.

    Google Scholar 

  34. Glencorse, T. A., Bateson, A. N., and Darlison, M. G. 1992 Differential localization of two alternatively spliced GABAA receptor gamma2-subunit mRNAs in the chick brain. Eur. J. Neurosci. 4:271–277.

    Google Scholar 

  35. Glencorse, T. A., Darlison, M. G., Barnard, E. A., and Bateson, A. N. 1993. Sequence and novel distribution of the chicken homologue of the mammalian gamma-aminobutyric acidA receptor gamma 1 subunit. J. Neurochem. 61:2294–2302.

    Google Scholar 

  36. Yin, H. S., and Lee, Y. J. 1994. Heterogeneity and differential expression of the gamma-aminobutyric acidA (GABAA)/benzodiazepine receptor in the avian brain during development. Cell Mol. Neurobiol. 14:359–371.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Fiszer de Plazas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez Gil, D.J., Carmona, C., Negri, G. et al. Hypoxia Differentially Reduces GABAA Receptor Density During Embryonic Chick Optic Lobe Development. Neurochem Res 29, 681–686 (2004). https://doi.org/10.1023/B:NERE.0000018838.43042.d4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000018838.43042.d4

Navigation