Skip to main content
Log in

Cloning, sequencing and partial characterisation of sorbitol transporter (srlT) gene encoding phosphotransferase system, glucitol/sorbitol-specific IIBC components of Erwinia herbicola ATCC 21998 – Cloning, sequencing and partial characterisation of sorbitol specific transporter (srlT) gene of Erwinia herbicola ATCC 21998

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A DNA fragment of approximately 1500 bp, harbouring the sorbitol transport gene (srlT), was amplified from the chromosomal DNA of Erwinia herbicola ATCC 21998 by PCR and cloned in Escherichia coli JM109. Degenerate oligonucleotide primers used were designed based on the conserved regions in the gene sequences within the gut operon of E. coli (Gene Bank accession no. J02708) and the srl operon of Erwinia amylovora (Gene Bank accession no. Y14603). The cloned DNA fragment was sequenced and found to contain an open reading frame of 1473 nucleotides coding for a protein of 491 amino acids, corresponding to a mass of 52410 Da. The nucleotide sequence of this ORF was highly homologous to that of the gutA gene of Escherichia coli gut operon, the srlE gene of Shigella flexrni and the sorbitol transporter gene sequence of Escherichia coli K12 (Gene Bank accession nos. J02708, AE016987 and D90892 respectively). The protein sequence showed significant homology to that of the phosphotransferase system i.e. the glucitol/sorbitol-specific IIBC components of Escherichia coli and Erwinia amylovora (P56580, O32522). The cloned DNA fragment was introduced into a pRA90 vector and the recombinant was used for developing srlT mutants of Erwinia herbicola, by homologous recombination. Mutants obtained were unable to grow on minimal medium with sorbitol. The insertion of the pRA90 vector inside the srlT gene sequence of the mutants was confirmed by DNA-DNA hybridisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldridge P, Metzger M & Geider K (1997) Mol. Gen. Genet. 256: 611–619

    Google Scholar 

  2. Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ (1990) J. Mol. Biol. 215: 403–410

    Google Scholar 

  3. Anderson S, Marks CB, Lazarus R, Miller J, Stafford K, Sey-mour J, Light D, Rastetter W & Estell D (1985) Science 230: 144–149

    Google Scholar 

  4. Birnboim HC & Dolly J (1979) Nucl. Acids Res. 7: 1513–1518.

    Google Scholar 

  5. Borodovsky M & McIninch J (1993) Comput. Chem. 17: 122–133

    Google Scholar 

  6. Corpet F (1988) Nucl. Acids Res. 16 (22): 10881–10890

    Google Scholar 

  7. Deng W, Liou SR, Plunkett G, Mayhew GF, Rose DJ, Ur-land V, Kodoyianni V, Schwartz DC & Blattner FR (2003) J. Bacteriol. 185 (7): 2330–2337

    Google Scholar 

  8. Dills S, Apperson A, Schmidt M & Saier Jr. M (1980) Microbiol. Rev. 44: 385–418.

    Google Scholar 

  9. Ebright R (1982) Molecular Structrure and Biological Activity (Griffen J & Duax W eds) Elsevier Scientific Publishing Co., Inc., New York

    Google Scholar 

  10. Grindley JF, Payton MA, Van de pol H, & Hardy KG (1988) Appl. Environ. Microbiol. 54: 1770–1775

    Google Scholar 

  11. Kazutoshi ITO, Tamotu N & Kazuo I (1988) Agr. Biol. Chem. 52(1): 293–294.

    Google Scholar 

  12. Koul S, Verma V, Johri S, & Qazi GN (1995) World J. Microbiol. Biotechnol. 11(2): 234–235.

    Google Scholar 

  13. Kundig W, Ghosh S & Roseman S (1964) Proc. Natl. Acad. Sci. 52: 1067–1074.

    Google Scholar 

  14. Kyte J & Doolittle RF (1982) J. Mol. Biol 157: 105–132

    Google Scholar 

  15. Lee HW & Pan JG (1999) J. Ind. Microbiol. and Biotechnol. 23 (2): 106–111.

    Google Scholar 

  16. Lengeler J (1975) J. Bacteriol. 124: 39–47

    Google Scholar 

  17. Pitcher DG, Saunders NA & Owen RJ (1989) Lett. In Appl. Microbiol. 8: 151–156

    Google Scholar 

  18. Postma PW, Lengeler JW & Jacobson GR (1993) Microbiol. Rev. 57: 543–594

    Google Scholar 

  19. Postma PW & Roseman (1976) Biochim. Biophys. Acta 457: 213–257.

    Google Scholar 

  20. Rope P, Zbar R, Sarkar H & Kaback H (1989) Proc. Natl. Acad. Sci. USA. 86: 3992–3996

    Google Scholar 

  21. Stephanie SP, Paulsen IT & Saier MH Jr. (1998) Microbiol. Mol. Biol. Rev. 62: 1–34

    Google Scholar 

  22. Yamada M & Saier MH (1987) J. Biol. Chem. 262: 5455–5463

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qazi, P., Johri, S., Verma, V. et al. Cloning, sequencing and partial characterisation of sorbitol transporter (srlT) gene encoding phosphotransferase system, glucitol/sorbitol-specific IIBC components of Erwinia herbicola ATCC 21998 – Cloning, sequencing and partial characterisation of sorbitol specific transporter (srlT) gene of Erwinia herbicola ATCC 21998. Mol Biol Rep 31, 143–149 (2004). https://doi.org/10.1023/B:MOLE.0000043553.49376.59

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MOLE.0000043553.49376.59

Navigation