Skip to main content
Log in

Dedifferentiation-mediated changes in transposition behavior make the Activator transposon an ideal tool for functional genomics in rice

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

There is an inverse relationship between the level of cytosine methylation in genomic DNA and the activity of plant transposable elements. Increased transpositional activity is seen during early plant development when genomic methylation patterns are first erased and then reset. Prolonging the period of hypomethylation might therefore result in an increased transposition frequency, which would be useful for rapid genome saturation in transposon-tagged plant lines. We tested this hypothesis using transgenic rice plants containing Activator (Ac) from maize. R1 seeds from an Ac-tagged transgenic rice line were either directly germinated and grown to maturity, or induced to dedifferentiate in vitro, resulting in cell lines that were subsequently regenerated into multiple mature plants. Both populations were then analyzed for the presence, active reinsertion and amplification of Ac. Plants from each population showed excision-reinsertion events to both linked and unlinked sites. However, the frequency of transposition in plants regenerated from cell lines was more than nine-fold greater than that observed in plants germinated directly from seeds. Other aspects of transposon behavior were also markedly affected. For example, we observed a significantly larger proportion of transposition events to unlinked sites in cell line-derived plants. The tendency for Ac to insert into transcribed DNA was not affected by dedifferentiation. The differences in Ac activity coincided with a pronounced reduction in the level of genomic cytosine methylation in dedifferentiated cell cultures. We used the differential transposon behavior induced by dedifferentiation in the cell-line derived population for direct applications in functional genomics and validated the approach by recovering Ac insertions in a number of genes. Our results demonstrate that obtaining multiple Ac insertions is useful for functional annotation of the rice genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bancroft I. and Dean C. 1993. Transposition pattern of the maize element Ds in Arabidopsis thaliana. Genetics 134: 1221–1229.

    Google Scholar 

  • Bhatt A.M., Lister C., Crawford N. and Dean C. 1998. The transposition frequency of Tag1 elements is increased in transgenic Arabidopsis lines. Plant Cell 10: 427–434.

    Google Scholar 

  • Brettell R.I.S. and Dennis E.S. 1991. Reactivation of a silent Ac following tissue-culture is associated with heritable alterations in its methylation pattern. Mol. Gen. Genet. 229: 365–372.

    Google Scholar 

  • Chin H.G., Choe M.S., Lee S.H., Park S.H., Park S.H., Koo J.C. et al. 1999. Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J. 19: 615–623.

    Google Scholar 

  • Courtial B., Feuerbach F., Eberhard S., Rohmer L., Chiapello H., Camilleri C. and Lucas H. 2001. Tnt1 transposition events are induced by in vitro transformation of Arabidopsis thaliana and transposed copies integrate into genes. Mol. Genet. Genom. 265: 32–42.

    Google Scholar 

  • DeGreef B. and Jacobs M. 1996. Evidence for Tam3 activity in transgenic Arabidopsis thaliana. In Vitro Cell Dev. Biol. Plant 32: 241–248.

    Google Scholar 

  • Dooner H.K., Belachew A., Burgess D., Hardings S., Ralston M. and Ralstone E. 1994. Distribution of unlinked receptor-sites for transposed Ac elements from the bz-m2(Ac) allele in maize. Genetics 136: 261–279.

    Google Scholar 

  • Earp D.J., Lowe B. and Baker B. 1990. Amplification of genomic sequences flanking transposable elements in host and heterologous plants – a tool for transposon tagging and genome characterization. Nucleic Acids Res. 18: 3271–3279.

    Google Scholar 

  • Edwards K., Johnstone C. and Thompson C. 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 19: 1349–1349.

    Google Scholar 

  • Enoki H., Izawa T., Kawahara M., Komatsu M., Koh S., Kyozuka J. and Shimamoto K. 1999. Ac as a tool for the functional genomics of rice. Plant J. 19: 605–613.

    Google Scholar 

  • Goff S.A., Ricke D., Lan T.-H., Presting G., Wang R., Dunn M. et al. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. Japonica). Science 296: 92–100.

    Google Scholar 

  • Grappin P., Audeon C., Chupeau M.C. and Grandbastien M.A. 1996. Molecular and functional characterization of Slide, an Ac-like autonomous transposable element from tobacco. Mol. Gen. Genet. 252: 386–397.

    Google Scholar 

  • Greco R., Ouwerkerk P.B.F., Sallaud C., Kohli A., Columbo L., Puigdomenech P. et al. 2001a. Transposon insertional mutagenesis in rice. Plant Physiol. 125: 1175–1177.

    Google Scholar 

  • Greco R., Ouwerkerk P.B.F., Taal A.J.C., Favalli C., Beguiristain T., Puigdomenech P. et al. 2001b. Early and multiple Ac transpositions in rice suitable for efficient insertional mutagenesis. Plant Mol. Biol. 46: 215–227.

    Google Scholar 

  • Hamer L., DeZwaan T.M., Montenegro-Chamorro M.V., Frank S.A. and Hamer J.E. 2001. Recent advances in large-scale transposon mutagenesis. Curr. Opin. Chem. Biol. 5: 67–73.

    Google Scholar 

  • Hirochika H., Sugimoto K., Otsuki Y., Tsugawa H. and Kanda M. 1996. Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci. USA 93: 7783–7788.

    Google Scholar 

  • Hirochika H. 1997. Retrotransposons of rice: their regulation and use for genome analysis. Plant Mol. Biol. 35: 231–240.

    Google Scholar 

  • Hirochika H. 2001. Contribution of the Tos17 retrotransposon to rice functional genomics. Curr. Opin. Plant Biol. 4: 118–122.

    Google Scholar 

  • Izawa T., Ohnishi T., Nakano T., Ishida N., Enoki H., Hashimoto H. et al. 1997. Transposon tagging in rice. Plant Mol. Biol. 35: 219–229.

    Google Scholar 

  • Jaligot E., Rival A., Beule T., Dussert S. and Verdeil J. 2000. Somaclonal variation in oil palm (Elaeis guineensis Jacq.): the DNA methylation hypothesis. Plant Cell Rep. 19: 684–690.

    Google Scholar 

  • Jeon J.S., Lee S., Jung K.H., Jun S.H., Jeong D.H., Lee J. et al. 2000. T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22: 561–570.

    Google Scholar 

  • Jeon J.S. and An G.H. 2001. Gene tagging in rice: a high through-put system for functional genomics. Plant Sci. 161: 211–219.

    Google Scholar 

  • Jones J.D.G., Carland F.C., Lim E., Raltson E. and Dooner H.K. 1990. Preferential transposition of the maize element Activator to linked chromosomal locations in tobacco. Plant Cell 2: 701–707.

    Google Scholar 

  • Kaeppler S.M. and Phillips R.L. 1993. DNA methylation and tissue culture-induced variation. In Vitro Cell Dev. Biol. Plant 29: 125–130.

    Google Scholar 

  • Kitamura K., Hashida S., Mikami T. and Kishima Y. 2001. Position effect of the excision frequency of the Antirrhinum transposon Tam3: implications for the degree of position-dependent methylation in the ends of the element. Plant Mol. Biol. 47: 475–490.

    Google Scholar 

  • Kohli A., Xiong J., Greco R., Christou P. and Pereira A. 2001. Tagged transcriptome display (TTD) in indica rice using Ac transposition. Mol. Genet. Genom. 266: 1–11.

    Google Scholar 

  • Koprek T., McElroy D., Louwerse J., Williams-Carrier R. and Lemaux P.G. 2000. An efficient method for dispersing Ds elements in the barley genome as a tool for determining gene function. Plant J. 24: 253–263.

    Google Scholar 

  • Koprek T., Rangel S., McElroy D., Louwerse J.D., Williams-Carrier R.E. and Lemaux P.G. 2001. Transposon-mediated single-copy gene delivery leads to increased transgene expression stability in barley. Plant Physiol. 125: 1354–1362.

    Google Scholar 

  • Koukalova B., Kuhrova V., Vyskot B., Siroky J. and Bezdek M. 1994. Maintenance of the induced hypomethylated state of tobacco nuclear repetitive DNA sequences in the course of protoplast and plant regeneration. Planta 194: 306–310.

    Google Scholar 

  • Liu Y.G., Mitsukawa N., Oosumi T. and Whittier R.F. 1995. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8: 457–463.

    Google Scholar 

  • Maes T., De Keukelerie P. and Gerats T. 1999. Plant tagnology. Trends Plant Sci. 4: 90–96.

    Google Scholar 

  • Mckenzie N., Wen L.Y. and Dale P.J. 2002. Tissue-culture enhanced transposition of the maize transposable element Dissociation in Brassica oleracea var. ‘Italica’. Theor. Appl. Genet. 105: 23–33.

    Google Scholar 

  • Miura A., Yonebayashi S., Watanabe K., Toyama T., Shimada H. and Kakutani T. 2001. Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature 411: 212–214.

    Google Scholar 

  • Morris P.C., Jessop A. and Altmann T. 1993. Selection for enhanced germinal excision of Ac in transgenic Arabidopsis thaliana. Theor. Appl. Genet. 86: 919–926.

    Google Scholar 

  • Muller E., Brown P.T.H., Hartke S. and Lorz H. 1990. DNA variation in tissue-culture-derived rice plants. Theor. Appl. Genet 80: 673–679.

    Google Scholar 

  • Nakagawa Y., Machida C., Machida Y. and Toriyama K. 2000. Frequency and pattern of transposition of the maize transposable element Ds in transgenic rice plants. Plant Cell Physiol. 41: 733–742.

    Google Scholar 

  • Ozeki Y., Davies E. and Takeda J. 1997. Somatic variation during long term subculturing of plant cells caused by insertion of a transposable element in a phenylalanine ammonia-lyase (PAL) gene. Mol. Gen. Genet. 254: 407–416.

    Google Scholar 

  • Parinov S. and Sundaresan V. 2000. Functional genomics in Arabidopsis: large-scale insertional mutagenesis complements the genome sequencing project. Curr. Opin. Biotechnol. 11: 157–161.

    Google Scholar 

  • Peschke V.M. and Phillips R.L. 1991. Activation of the maize transposable element Suppressor-mutator (Spm) in tissue culture. Theor. Appl. Genet. 81: 90–97.

    Google Scholar 

  • Peschke V.M., Phillips R.L. and Gengenbach B.G. 1987. Discovery of transposable element activity among progeny of tissue culture-derived maize plants. Science 238: 804–807.

    Google Scholar 

  • Peschke V.M., Phillips R.L. and Gengenbach B.G. 1991. Genetic and molecular analysis of tissue culture-derived Ac elements. Theor. Appl. Genet. 82: 121–129.

    Google Scholar 

  • Primrose S.B. and Twyman R.M. 2002. Principles of Genome Analysis and Genomics (3rd edn.) Blackwell Science, Oxford UK.

    Google Scholar 

  • Richards E.J. 1997. DNA methylation and plant development. Trends Genet. 13: 319–323.

    Google Scholar 

  • Ros F. and Kunze R. 2001. Regulation of Activator/Dissociation transposition by replication and DNA methylation. Genetics 157: 1723–1733.

    Google Scholar 

  • Schmitt F., Oakeley E.J. and Jost J.P. 1997. Antibiotics induce genome-wide hypermethylation in cultured Nicotiana tabacum plants. J. Biol. Chem. 272: 1534–1540.

    Google Scholar 

  • Seki M., Ito T., Shibata D. and Shinozaki K. 1999. Regional mutagenesis of specific genes on the CIC5F11/CIC2B9 locus of Arabidopsis thaliana chromosome 5 using the Ac/Ds transposon in combination with the cDNA scanning method. Plant Cell Physiol. 40: 624–639.

    Google Scholar 

  • Smulders M., Rus-Kortekaas W. and Vosman B. 1995. Tissue culture-induced methylation polymorphisms in repetitive DNA of tomato calli and regenerated plants. Theor. Appl. Genet. 91: 1257–1264.

    Google Scholar 

  • Sudhakar D., Duc L.T., Bong B.B., Tinjuangjun P., Maqbool S.B., Valdez M. et al. 1998. An efficient rice transformation system utilizing mature seed-derived explants and a portable, inexpensive particle bombardment device. Transgenic Res. 7: 289–294.

    Google Scholar 

  • Sundaresan V., Springer P., Volpe T., Haward S., Jones J.D.G., Dean C. et al. 1995. Patterns of gene-action in plant development revealed by enhancer trap and gene trap transposable elements. Genes & Dev. 9: 1797–1810.

    Google Scholar 

  • Takeda S., Sugimoto K., Otsuki H. and Hirochika H. 1999. A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue-culture, wounding, methyl jasmonate and fungal elicitors. Plant J. 18: 383–393.

    Google Scholar 

  • Vain P., Worland B., Kohli A., Snape J.W. and Christou P. 1998. Green fluorescent protein (GFP) as a vital screenable marker in rice transformation. Theor. Appl. Genet. 96: 164–169.

    Google Scholar 

  • Walbot V. 2000. Saturation mutagenesis using maize transposons. Curr. Opin. Plant Biol. 3: 103–107.

    Google Scholar 

  • Yoder J.A., Walsh C.P. and Bestor T.H. 1997. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13: 335–340.

    Google Scholar 

  • Yu J., Hu S., Wang J., Wong G. K.-S., Li S., Liu B. et al. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. Indica). Science 296: 79–92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Christou.

Additional information

These authors contributed equally to the work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohli, A., Prynne, M.Q., Miro, B. et al. Dedifferentiation-mediated changes in transposition behavior make the Activator transposon an ideal tool for functional genomics in rice. Molecular Breeding 13, 177–191 (2004). https://doi.org/10.1023/B:MOLB.0000018768.36290.94

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MOLB.0000018768.36290.94

Navigation