Skip to main content
Log in

Profiling of generic anti-phosphopeptide antibodies and kinases with peptide microarrays using radioactive and fluorescence-based assays

  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Kinases represent one of the largest enzyme families and key regulatory proteins in the cell. Only a small subset of these enzymes has been characterised so far. We have prepared different types of phosphopeptide and peptide microarrays displaying peptides deduced from annotated human phosphorylation sites and cytoplasmic domains of all annotated human membrane proteins. This approach was enabled by fully-automated high throughput micro-scale synthesis of peptides by the SPOT technology combined with chemo-selective immobilisation on modified glass slides. The phosphopeptide microarrays displaying 2923 peptides in total have been used for the characterisation of commercially available generic anti-phosphopeptide antibodies. This enabled us to detect Abl kinase activity on a microarray with anti-phosphotyrosine antibodies yielding results comparable to those obtained from a radioactive assay. More than 13 000 peptides deposited on six glass slides were used to profile casein kinase 2 (CK2) using a radioactive assay, since no generic antibody for the reliable detection of serine or threonine phosphorylation could be identified. All previously identified substrates were detected in the microarray experiment. In order to confirm whether substrates on the microarray are substrates in solution phase assays, more than 700 peptides were synthesised and tested with CK2 in a solutionphase assay. All substrates identified in the solutionphase assay were also detected on the microarray.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, J. A., Activation loop phosphorylation and catalysis in protein kinases: Is there functional evidence for the autoinhibitor model?, Biochemistry, 42 (2003) 6001-6007.

    Google Scholar 

  2. Manning, G., Whyte, D. B., Martinez, R., Hunter, T. and Sudarsanam, S., The protein kinase complement of the human genome, Science, 298 (2002) 1912-1934.

    PubMed  Google Scholar 

  3. (a) Frank R., SPOT synthesis: An easy technique for the positionally addressable, parallel chemical synthesis on a membrane support, Tetrahedron, 48 (1992) 9217-9232. (b) Tegge, W., Frank, R., Hofmann, F. and Dostmann, W. R., Determination of cyclic nucleotide-dependent protein kinase sub299 strate specificity by the use of peptide libraries on cellulose paper, Biochemistry, 34 (1995) 10569-10577. (c) Szallasi, Z., Denning, M. F., Chang, E. Y., Rivera, J., Yuspa, S. H., Lehel, C., Olah, Z., Anderson, W. B. and Blumberg, P. M., Development of a rapid approach to identification of tyrosine phosphorylation sites: Application to PKC delta phosphorylated upon activation of the high affinity receptor for IgE in rat basophilic leukemia cells, Biochem. Biophys. Res. Commun., 214 (1995) 888-894. (d) Toomik, R., Edlund, M., Ek, P., Obrink, B. and Engstrom, L., Simultaneously synthesized peptides on continuous cellulose membranes as substrates for protein kinases, Pept. Res., 9 (1996) 6-11. (e) Toomik, R. and Ek, P., A potent and highly selective peptide substrate for protein kinase C assay, Biochem. J., 322 (1997) (Pt 2) 455-460. (f) Tegge, W. J. and Frank, R., Analysis of protein kinase substrate specificity by the use of peptide libraries on cellulose paper (SPOTmethod), Methods Mol. Biol., 87 (1998) 99-106. (g) Edlund, M., Wikstrom, K., Toomik, R., Ek, P. and Obrink, B.,Characterization of protein kinase C-mediated phosphorylation of the short cytoplasmic domain isoform of C-CAM, FEBS Lett., 425 (1998) 166-170. (h) Moilanen, A. M., Karvonen, U., Poukka, H., Janne, O. A. and Palvimo, J. J., Activation of androgen receptor function by a novel nuclear protein kinase, Mol. Biol. Cell, 9 (1998) 2527-2543. (i) Dostmann, W. R., Nickl, C., Thiel, S., Tsigelny, I., Frank, R. and Tegge, W. J., Delineation of selective cyclic GMP-dependent protein kinase I alpha substrate and inhibitor peptides based on combinatorial peptide libraries on paper, Pharmacol. Ther., 82 (1999) 373-387. (j) Loog, M., Toomik, R., Sak, K., Muszynska, G., Jarv, J. and Ek, P., Peptide phosphorylation by calcium-dependent protein kinase from maize seedlings, Eur. J. Biochem., 267 (2000) 337-343. (k) Dostmann, W. R., Taylor, M. S., Nickl, C. K., Brayden, J. E., Frank, R. and Tegge, W. J., Highly specific, membrane-permeant peptide blockers of cGMP-dependent protein kinase Ialpha inhibit NO-induced cerebral dilation, Proc. Natl. Acad. Sci. USA, 97 (2000) 14772-14777. (l) Himpel, S., Tegge, W., Frank, R., Leder, S., Joost, H. G. and Becker, W., Specificity determinants of substrate recognition by the protein kinase DYRK1A, J. Biol. Chem., 275 (2000) 2431-2438.

    Google Scholar 

  4. (a) MacBeath, G. and Schreiber, S. L., Printing proteins as microarrays for high-throughput function determination, Science, 289 (2000) 1760-1763. (b) Falsey, J. R., Renil, M., Park, S., Li, S. and Lam, K. S., Peptide and small molecule microarray for high throughput cell adhesion and functional assays, Bioconjugate Chem., 12 (2001) 346-353. (c) Houseman, B. T., Huh, J. H., Kron, S. J. and Mrksich, M., Peptide chips for the quantitative evaluation of protein kinase activity, Nat. Biotechnol., 20 (2002) 270-274. (d) Houseman, B. T. and Mrksich, M., Towards quantitative assays with peptide chips: A surface engineering approach, Trends Biotechnol., 20 (2002) 279-281. (e) Lesaicherre, M. L., Uttamchandani, M., Chen, G. Y. and Yao, S. Q., Antibody-based fluorescence detection of kinase activity on a peptide array, Bioorg. Med. Chem. Lett., 12 (2002) 2085-2088. (f) Martin, K., Steinberg, T. H., Cooley, L. A., Gee, K. R., Beechem, J. M. and Patton, W. F., Quantitative analysis of protein phosphorylation status and protein kinase activity on microarrays using a novel fluorescent phosphorylation sensor dye, Proteomics, 3 (2003) 1244-1255.

    PubMed  Google Scholar 

  5. (a) Reimer, U., Reineke, U. and Schneider-Mergener, J., Peptide arrays: From macro to micro, Curr. Opin. Biotechnol., 13 (2002) 315-320. (b) Lizcano, J. M., Deak, M., Morrice, N., Kieloch, A., Hastie, C. J., Dong, L., Schutkowski, M., Reimer, U. and Alessi, D. R., Molecular basis for the substrate specificity of NIMA-related kinase-6 (NEK6). Evidence that NEK6 does not phosphorylate the hydrophobic motif of ribosomal S6 protein kinase and serum-and glucocorticoid-induced protein kinase in vivo, J. Biol. Chem., 277 (2002) 27839-27849. (c) Schutkowski, M., Reimer, U., Panse, S., Dong, L. and Schneider-Mergener, J., Peptide micro-arrays for kinase profiling, Cell. Mol. Biol. Lett., 8 (2003) 605.

    PubMed  Google Scholar 

  6. (a) Kaufmann, H., Bailey J. E. and Fussenegger, M., Use of antibodies for detection of phosphorylated proteins separated by two-dimensional gel electrophoresis, Proteomics, 1 (2001) 194-199. (b) Salomon, A. R., Ficarro, S. B., Brill, L. M., Brinker, A., Phung, Q. T., Ericson, C., Sauer, K., Brock, A., Horn, D. M., Schultz, P. G. and Peters, E. C., Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry, Proc. Natl. Acad. Sci. USA, 21 (2003) 443-448. (c) Steinberg, T. H., Agnew, B. J., Gee, K. R., Leung, W. Y., Goodman, T., Schulenberg, B., Hendrickson, J., Beechem, J.M., Haugland, R. P. and Patton, W. F., Global quantitative phosphoprotein analysis using multiplexed proteomics technology, Proteomics, 3 (2003) 1128-1144. (d) Craig, A. L., Bray, S. E., Finlan, L. E., Kernohan, N. M. and Hupp, T. R., Signaling to p53: The use of phospho-specific antibodies to probe for in vivo kinase activation, Methods.Mol. Biol., 234 (2003) 171-202.

    PubMed  Google Scholar 

  7. Kreegipuu, A., Blom, N. and Brunak, S., PhosphoBase, a database of phosphorylation sites: Release 2.0, Nucleic Acids Res., 27 (1999) 237-239.

    PubMed  Google Scholar 

  8. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M. C., Estreicher, A., Gasteiger, E., Martin, M. J., Michoud, K., O'Donovan, C., Phan, I., Pilbout, S. and Schneider, M., The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003, Nucleic Acids Res., 31 (2003) 365-370.

    PubMed  Google Scholar 

  9. Wenschuh, H., Volkmer-Engert, R., Schmidt, M., Schulz, M., Schneider-Mergener, J. and Reineke, U., Coherent membrane supports for parallel microsynthesis and screening of bioactive peptides, Biopolymers, 55 (2000) 188-206.

    PubMed  Google Scholar 

  10. Meggio, F. and Pinna, L. A., One-thousand-and-one substrates of protein kinase CK2?, FASEB J., 17(2003) 349-368.

    PubMed  Google Scholar 

  11. (a) Wong, E. V., Schaefer, A. W., Landreth, G. and Lemmon, V., Casein kinase II phosphorylates the neural cell adhesion molecule L1, J. Neurochem., 66 (1996) 779-786. (b) Pinna, L. A. and Meggio, F., Protein kinase CK2 (‘casein kinase-2’) and its implication in cell division and proliferation, Prog. Cell. Cycle. Res., 3 (1997) 77-97. (c) Raman, C., Kuo, A., Deshane, J., Litchfield, D. W. and Kimberly, R. P., Regulation of casein kinase 2 by direct interaction with cell surface receptor CD5, J. Biol. Chem., 273 (1998) 19183-19189. (d) Steveson, T. C., Zhao, G. C., Keutmann, H. T., Mains, R. E. and Eipper, B. A., Access of a membrane protein to secretory granules is facilitated by phosphorylation, J. Biol. Chem., 276 (2001) 40326-40337.

    PubMed  Google Scholar 

  12. Nuthall, H. N., Husain, J., McLarren, K. W. and Stifani, S., Role for Hes1-induced phosphorylation in Groucho-mediated transcriptional repression, Mol. Cell. Biol., 22 (2002) 389-399.

    PubMed  Google Scholar 

  13. (a) Pinna, L. A., Meggio, F. and Sarno, S., 'Casein Kinase-2 and Cell Signaling', In S. Papa and J. M. Tager (eds), Biochemistry of Cell Membranes, Birkhäuser Verlag, Basel, Switzerland, 1995, pp. 15-27. (b) Gugneja, S. and Scarpulla, R. C., Serine phosphorylation within a concise amino-terminal domain in nuclear respiratory factor 1 enhances DNA binding, J. Biol. Chem., 272 (1997) 18732-18739. (c) Kayukawa, K., Makino, Y., Yogosawa, S. and Tamura, T., A serine residue in the N-terminal acidic region of rat RPB6, one of the common subunits of RNA polymerases, is exclusively phosphorylated by casein kinase II in vitro, Gene, 234 (1999) 139-147. (d) Torres, J. and Pulido, R., The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation, J. Biol. Chem., 276 (2001) 993-998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Schutkowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panse, S., Dong, L., Burian, A. et al. Profiling of generic anti-phosphopeptide antibodies and kinases with peptide microarrays using radioactive and fluorescence-based assays. Mol Divers 8, 291–299 (2004). https://doi.org/10.1023/B:MODI.0000036240.39384.eb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MODI.0000036240.39384.eb

Navigation