Skip to main content
Log in

The Conformational State of Apomyoglobin in the Presence of Phospholipid Vesicles at Neutral pH

  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The conformational state of sperm whale apomyoglobin (apoMb) was studied at neutral pH in the presence of negatively charged vesicles using near and far UV circular dichroism, tryptophan fluorescence, differential scanning microcalorimetry, and fast performance liquid chromatography. Under these conditions, the apoMb structure undergoes transition from its native to an intermediate state. In this state the protein loses its rigid native structure but retains its secondary structure. However, the environment of tryptophan residues remains rather hydrophobic. This intermediate state of apoMb shows properties similar to those of its molten globule state in solution. It is shown that apoMb can bind to negatively charged phospholipid vesicles even at neutral pH. A possible functional role of this intermediate state is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Light III W.R., Olson J.S. 1990. Transmembrane movement of heme. J. Biol. Chem. 265, 15623–15631.

    Google Scholar 

  2. Cannon J.B., Kuo F.S., Pasternack R.F., Wong N.M., Muller-Eberhard U. 1984. Kinetics of the interaction of hemin liposomes with heme binding proteins. Biochemistry. 23, 3715–3721.

    Google Scholar 

  3. Antonini E., Brunori M. 1971. Hemoglobin and myoglobin in their reactions with ligands. Frontiers of Biology. Eds. Neuberger A., Tatum E.L. Amsterdam-London: North-Holland Publishing Company. 21, 436 p.

    Google Scholar 

  4. Griko Yu.V., Privalov P.L., Venyaminov S.Yu., Kutyshenko V. P. 1988. Thermodynamic study of the apomyoglobin structure. J. Mol. Biol. 202, 127–138.

    Google Scholar 

  5. Hughson F.M., Wright P.E., Baldwin R.L. 1990. Structural characterization of a partly folded apomyoglobin intermediate. Science. 249, 1544–1548.

    Google Scholar 

  6. Jennings P., Wright P.E. 1993. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science. 262, 892–896.

    Google Scholar 

  7. Nishii I., Kataoka M., Goto Y. 1995. Thermodynamic stability of the molten globule states of apomyoglobin. J. Mol. Biol. 250, 223–238.

    Google Scholar 

  8. Bismuto E., Colonna G., Savy F., Irace G. 1985. Myoglobin structure and regulation of solvent accessibility of heme pocket. Int. J. Peptide Protein Res. 26, 195–207.

    Google Scholar 

  9. Privalov P.L., Griko Yu.V., Venyaminov S.Yu., Kutyshenko V.P. 1986. Cold denaturation of myoglobin. J. Mol. Biol. 190, 487–498.

    Google Scholar 

  10. Bychkova V.E., Ptitsyn O.B. 1993. The molten globule in vitro and in vivo. Chemtracts-Biochem. and Mol. Biol. 4, 133–163.

    Google Scholar 

  11. Ptitsyn O.B., Bychkova V.E., Uversky V.N. 1995. Kinetic and equilibrium folding intermediates. Phil. Trans. Royal Soc. 348, 35–41.

    Google Scholar 

  12. Endo T., Eilers M., Schatz G. 1989. Binding of a tightly folded artificial mitochondrial precursor protein to the mitochondrial outer membrane involves a lipid-mediated conformational change. J. Biol. Chem. 264, 2951–2956.

    Google Scholar 

  13. de Kruijff B. 1994. Anionic phospholipids and protein translocation. FEBS Lett. 346, 78–82.

    Google Scholar 

  14. Ahn T., Kim J.-S., Lee B.-C., Yun C.-H. 2001. Effects of lipids on the interaction of SecA with model membranes. Arch. Biochem. Biophys. 359, 14–20.

    Google Scholar 

  15. Thorolfsson M., Doskeland A.P., Muga A., Martinez A. 2002. The binding of tyrosine hydroxylase to negatively charged lipid bilayers involves the N-terminal region of the enzyme. FEBS Lett. 519, 221–226.

    Google Scholar 

  16. Chao H., Martin G.G., Russell W.K., Waghela S.D., Russell D.H., Schroeder F., Kier A.B. 2002. Membrane charge and curvature determine interaction with acyl-CoA binding protein (ACBP) and fatty acyl-CoA targeting. Biochemistry. 41, 10540–10553.

    Google Scholar 

  17. Weinreb G.E., Mukhopadhyay K., Majumder R., Lentz B.R. 2003. Cooperative roles of factor V(a) and phosphatidylserine-containing membranes as cofactors in prothrombin activation. J. Biol. Chem. 278, 5679–5684.

    Google Scholar 

  18. Kim J., Kim H. 1986. Fusion of phospholipid vesicles induced by alpha-lactalbumin at acidic pH. Biochemistry. 25, 7867–7874.

    Google Scholar 

  19. Banuelos S., Muga A. 1995. Binding of molten globule-like conformations to lipid bilayers. Structure of native and partially folded alpha-lactalbumin bound to model membranes. J. Biol. Chem. 270, 29910–29915.

    Google Scholar 

  20. Shin I., Silman I., Weiner, L. 1996. Interaction of partially unfolded forms of Torpedo acetylcholinesterase with liposomes. Protein Sci. 5, 42–51.

    Google Scholar 

  21. Shin I., Silman I., Bon C., Weiner L. 1998. Liposome-catalyzed unfolding of acetylcholinesterase from Bungarus fasciatus. Biochemistry. 37, 4310–4316.

    Google Scholar 

  22. Silversmith R.E., Nelsestuen G.L. 1986. Assembly of the membrane attack complex of complement on small unilamellar phospholipid vesicles. Biochemistry. 25, 7717–7725.

    Google Scholar 

  23. Lee J.W., Kim H. 1988. Apomyoglobin forms a micellar complex with phospholipid at low pH. FEBS Lett. 241, 181–184.

    Google Scholar 

  24. van der Goot F.G., Gonzalez-Manas J.M., Lakey J.H., Pattus F. 1991. A “molten-globule” membrane-insertion intermediate of the pore-forming domain of colicin A. Nature. 354, 408–410.

    Google Scholar 

  25. Mel S.F., Stroud R.M. 1993. Colicin Ia inserts into negatively charged membranes at low pH with a tertiary but little secondary structural change. Biochemistry. 32, 2082–2089.

    Google Scholar 

  26. Muga A., Gonzalez-Manas J.M., Lakey J.H., Pattus F., Surewicz W.K. 1993. pH-dependent stability and membrane interaction of the pore-forming domain of colicin A. J. Biol. Chem. 268, 1553–1557.

    Google Scholar 

  27. Sanghera N., Pinheiro T.J.T. 2002. Binding of prion protein to lipid membranes and implications for prion conversion. J. Mol. Biol. 315, 1241–1256.

    Google Scholar 

  28. Bryson E.A., Rankin S.E., Carey M., Watts A., Pinheiro T.J.T. 1999. Folding of apocytochrome c in lipid micelles: formation of alpha-helix precedes membrane insertion. Biochemistry. 38, 9758–9767.

    Google Scholar 

  29. Rankin S.E., Watts A., Pinheiro T.J.T. 1998. Electrostatic and hydrophobic contributions to the folding mechanism of apocytochrome c driven by the interaction with lipid. Biochemistry. 37, 12588–12595.

    Google Scholar 

  30. Davidson W.S., Jonas A., Clayton D.F., George J.M. 1998. Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem. 273, 9443–9449.

    Google Scholar 

  31. Silvestro L., Axelsen P.H. 2000. Membrane-induced folding of cecropin A. Biophys. J. 79, 1465–1477.

    Google Scholar 

  32. Teale F.W.J. 1959. Cleavage of the heme-protein link by acid methylethylketone. Biochim. Biophys. Acta. 35, 543.

    Google Scholar 

  33. Hapner K.D., Bradshaw R.A., Hartzell C.R., Gurd F.R.N. 1968. Comparison of myoglobins from harbor seal, porpoise, and sperm whale I. Preparation and characterization. J. Biol. Chem. 243, 683–689.

    Google Scholar 

  34. Szoka F., Papahadjopoulos D. 1980. Comparative properties and methods of preparation of lipid vesicles (liposomes). Ann. Rev. Biophys. Bioeng. 9, 467–508.

    Google Scholar 

  35. Tsvetkov V.N., Eskin V.E., Frenkel S.Ya. 1964. Struktura makromolekul v rastvorakh (The Structure of Macromolecules in Solutions). Moscow: Nauka.

    Google Scholar 

  36. Jaenicke L. 1974. A rapid micromethod for the determination of nitrogen and phosphate in biological material. Anal. Biochem. 61, 623–627.

    Google Scholar 

  37. Privalov P.L., Potekhin S.A. 1986. Scanning microcalorimetry in studying temperature-induced changes in proteins. Methods Enzymol. 131, 4–51.

    Google Scholar 

  38. Vassilenko K.S., Uversky V.N. 2002. Native-like secondary structure of molten globules. Biochim. Biophys. Acta. 1564, 168–177.

    Google Scholar 

  39. Kamatari Y.O., Ohji S., Konno T., Seki Y., Soda K., Kataoka M., Akasaka K. 1999. The compact and expanded denatured conformations of apomyoglobin in the methanol-water solvent. Protein Sci. 8, 873–882.

    Google Scholar 

  40. Bychkova V.E., Dujsekina A.E., Klenin S.I., Tiktopulo E.I., Uversky V.N., Ptitsyn O.B. 1996. Molten globule-like state of cytochrome c under conditions simulating those near the membrane surface. Biochemistry. 35, 6058–6063.

    Google Scholar 

  41. Eisenberg M., Gresalfi T., Riccio T., McLaughlin S. 1979. Absorption of monovalent cations to bilayer membranes containing negative phospholipids. Biochemistry. 18, 5213–5223.

    Google Scholar 

  42. Prats M., Teissie J., Tocanne J.-F. 1986. Lateral proton conduction at lipid-water interfaces and its implications for chemiosmotic-coupling hypothesis. Nature. 322, 756–758.

    Google Scholar 

  43. Xue L.L., Wang Y.H., Xie Y., Yao P., Wang W.H., Qian W., Huang Z.X., Wu J., Xia Z.X. 1999. Effect of mutation at valine 61 on the three-dimensional structure, stability, and redox potential of cytochrome b5. Biochemistry. 38, 11961–11972.

    Google Scholar 

  44. Hunter C.L., Lloyd E., Eltis L.D., Rafferty S.P., Lee H., Smith M., Mauk A.G. 1997. Role of the heme propionates in the interaction of heme with apomyoglobin and apocytochrome b5. Biochemistry. 36, 1010–1017.

    Google Scholar 

  45. Rose M.Y., Olson J.S. 1983. The kinetic mechanism of heme binding to human apohemoglobin. J. Biol. Chem. 258, 4298–4303.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basova, L.V., Tiktopulo, E.I., Kashparov, I.A. et al. The Conformational State of Apomyoglobin in the Presence of Phospholipid Vesicles at Neutral pH. Molecular Biology 38, 272–280 (2004). https://doi.org/10.1023/B:MBIL.0000023745.78053.37

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MBIL.0000023745.78053.37

Navigation