Skip to main content
Log in

Representations of CCR Algebras in Krein Spaces of Entire Functions

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Representations of CCR algebras in spaces of entire functions are classified on the basis of isomorphisms between the Heisenberg CCR algebra \(\mathcal{A}_H\) and star algebras of holomorphic operators. To each representation of such algebras, satisfying a regularity and a reality condition, one can associate isomorphisms and inner products so that they become Krein star representations of \(\mathcal{A}_H\), with the gauge transformations implemented by a continuous U(1) group of Krein space isometries. Conversely, any holomorphic Krein representation of \(\mathcal{A}_H\), having the gauge transformations implemented as before and no null subrepresentation, are shown to be contained in a direct sum of the above representations. The analysis is extended to CCR algebras with [a i , a j *]=δ i j η i , η i =±1, i=1,...,M, the infinite-dimensional case included, under a spectral condition for the implementers of the gauge transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fock, V.: Z. Physik 49 (1928), 339; Bargmann, V.: Comm. Pure Appl. Math. 14 (1961), 187; Segal, I.: Illinois J. Math. 6 (1962), 500; For a general survey, see Babbitt, D.: In: E. H. Lieb et al. (eds), Studies in Mathematical: Physics, Princeton Univ. Press, 1976, p. 19.

    Google Scholar 

  2. Klauder, J. R. and Skagerstamm, B-S.: Coherent States, World Scientific, Singapore, 1985; Hall, B. C.: Holomorphic methods in analysis and mathematical physics, arXiv: quant-ph/ 9912054 v2.

    Google Scholar 

  3. Gupta, S.: Proc. Soc. Lond. A 63 (1950), 681; Bleuler, K.: Helv. Phys. Acta 23 (1950), 567.

    Google Scholar 

  4. Nakanishi, N. and Oijma, I.: Covariant Operator Formalism of Gauge Theories and Quantum Gravity, World Scientific, Singapore, 1990.

    Google Scholar 

  5. Dimock, J.: J. Math. Phys. 41 (2000), 40.

    Google Scholar 

  6. Dirac, P. A. M.: Proc. Roy. Soc. London Ser. A 180 (1942), 1; Pauli, W.: Rev. Modern Phys. 15 (1943), 175; Heisenberg, W.: Nuclear Phys. 4 (1957), 532.

    Google Scholar 

  7. Mnatsakanova, M., Morchio, G., Strocchi, F. and Vernov, Yu.: J. Math. Phys. 39 (1998), 2969.

    Google Scholar 

  8. Morchio, G. and Strocchi, F.: In: Stochastic Processes, Physics and Geometry: New Interplays. II, Proc. Conf. Infinite Dimensional Stochastic Analysis and Quantum Physics, Canad. Math. Soc. Conf. Proc. 29, Amer. Math. Soc., Providence, 2000, p. 491.

    Google Scholar 

  9. Miller, W. Jr.: Lie Theory and Special Functions, Academic Press, New York, 1968.

    Google Scholar 

  10. Nelson, E.: Ann. Math. 70 (1959), 572; Nelson, E. and Stinespring, W. F.: Amer. J. Math. 81 (1959), 547.

    Google Scholar 

  11. Whittaker, E. T. and Watson, G. N.: A Course of Modern Analysis, Cambridge Univ. Press, 1962, Sect. 16.5.

  12. Bognar, J.: Indefinite Inner-Product Spaces, Springer, Berlin, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mnatsakanova, M., Morchio, G., Strocchi, F. et al. Representations of CCR Algebras in Krein Spaces of Entire Functions. Letters in Mathematical Physics 65, 159–172 (2003). https://doi.org/10.1023/B:MATH.0000010715.93852.84

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MATH.0000010715.93852.84

Navigation