Skip to main content
Log in

Hydrodynamic Limit of Coagulation-Fragmentation Type Models of k-Nary Interacting Particles

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Hydrodynamic limit of general k-nary mass exchange processes with discrete mass distribution is described by a system of kinetic equations that generalize classical Smoluchovski's coagulation equations and many other models that are intensively studied in the current mathematical and physical literature. Existence and uniqueness theorems for these equations are proved. At last, for k-nary mass exchange processes with k>2 an alternative nondeterministic measure-valued limit (diffusion approximation) is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Aldous, Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists, Bernoulli 5:3–48 (1999).

    Google Scholar 

  2. H. Amann, Coagulation-fragmentation processes, Arch. Rational Mech. Anal. 151: 339–366 (2000).

    Google Scholar 

  3. J. M. Ball and J. Carr, The discrete coagulation-fragmentation equations: Existence, uniqueness, and density conservation, J. Stat. Phys. 61:203–234 (1990).

    Google Scholar 

  4. V. P. Belavkin, Quantum branching processes and nonlinear dynamics of multi-quantum systems, Dokl. Acad. Nauk SSSR 301:1348–1352 (1988). V. P. BelavkinEngl. Transl. in Sov. Phys. Dokl. 33:581–582 (1988).

    Google Scholar 

  5. V. Belavkin and V. Kolokoltsov, On general kinetic equation for many particle systems with interaction, fragmentation, and coagulation, Proc. Roy. Soc. London Ser. A 459:1–22 (2002).

    Google Scholar 

  6. Ph. Benian and D. Wrzosek, On infinite system of reaction-diffusion equations, Adv. Math. Sci. Appl. 7:349–364 (1997).

    Google Scholar 

  7. J. Bertoin, Homogeneous fragmentation processes, Probab. Theory Related Fields 121: 301–318 (2001).

    Google Scholar 

  8. J. Bertoin, Self-similar fragmentations, Ann. Inst. H. Poincaré Probab. Stat. 38:319–340 (2002).

    Google Scholar 

  9. J. Bertoin and J.-F. LeGall, Stochastic flows associated to coalescent processes, preprint 2002, available via http://felix.proba.jussieu.fr/mathdoc/preprints/

  10. J. Carr and F. da Costa, Instantaneous gelation in coagulation dynamics, Z. Angew. Math. Phys. 43:974–983 (1992).

    Google Scholar 

  11. J. F. Collet and F. Poupaud, Existence of solutions to coagulation-fragmentation systems with diffusion, Transport Theory Statist. Phys. 25:503–513 (1996).

    Google Scholar 

  12. D. Dawson, Measure-valued Markov processes, in École d'été de probabilités de Saint-Flour XXI-1991, P. L. Hennequin, ed., Springer Lect. Notes Math. Vol. 1541 (Springer, 1993), pp. 1–260.

  13. S. C. Davies, J. R. King, and J. A. Wattis, The Smoluchovski coagulation equations with continuous injection, J. Phys. A: Math. Gen. 32:7745–7763 (1999).

    Google Scholar 

  14. P. B. Dubovski, A “triangle” of interconnected coagulation models, J. Phys. A: Math. Gen. 32:781–793 (1999).

    Google Scholar 

  15. E. Dynkin, An Introduction to Branching Measure-Valued Processes, CRM Monograph Series Vol. 6 (AMS, Providence, RI, 1994).

    Google Scholar 

  16. S. N. Ethier and T. G. Kurtz, Markov Processes. Characterization and Convergence (Wiley, 1986).

  17. N. Jacob, Pseudo-Differential Operators and Markov Processes. Vol. II: Generators and Their Potential Theory (Imperial College Press, London, 2002).

    Google Scholar 

  18. I. Jeon, Existence of gelling solutions for coagulation-fragmentation equations, Comm. Math. Phys. 194:541–567 (1998).

    Google Scholar 

  19. V. Kolokoltsov, Measure-valued limits of interacting particle systems with k-nary interactions I. One-dimensional limits, Probab. Theory Related Fields 126:364–394 (2003).

    Google Scholar 

  20. V. Kolokoltsov, Measure-valued limits of interacting particle systems with k-nary interactions II, Preprint (2002), to appear in Stochastics and Stochastics Reports.

  21. V. Kolokoltsov, On Extensions of mollified Boltzmann and Smoluchovski equations to particle systems with a k-nary interaction, Russian J. Math. Phys. 10:268–295 (2003).

    Google Scholar 

  22. V. Kolokoltsov, Symmetric stable laws and stable-like jump-diffusions, Proc. London Math. Soc. 3:725–768 (2000).

    Google Scholar 

  23. V. Kolokoltsov, On Markov processes with decomposable pseudo-differential generators, Preprint (2002), to appear in Stochastics and Stochastics Reports.

  24. M. Kostoglou and A. J. Karabelas, A study of nonlinear breakage equation: Analytical and asymptotic solutions, J. Phys. A: Math. Gen. 33:1221–1232 (2000).

    Google Scholar 

  25. M. Lachowicz, Ph. Laurencot, and D. Wrzosek, On the Oort–Hulst–Savronov coagulation equation and its relation to the Smoluchowski equation, SIAM J. Math. Anal. 34:1399–1421 (2003).

    Google Scholar 

  26. Ph. Laurencot and S. Mischler, The continuous coagulation-fragmentation equations with diffusion, Arch. Rational Mech. Anal. 162:45–99 (2002).

    Google Scholar 

  27. P. Laurencot and D. Wrzosek, The discrete coagulation equations with collisional breakage, J. Stat. Phys. 104:193–220 (2001).

    Google Scholar 

  28. M. Möhle and S. Sagitov, A classification of coalescent processes for haploid exchangeable population models, Ann. Probab. 29:1547–1562 (2001).

    Google Scholar 

  29. J. Norris, Smoluchovski's coagulation equation: Uniqueness, nonuniqueness, and a hydrodynamic limit for the stochastic coalescent, Ann. Appl. Probab. 9:78–109 (1999).

    Google Scholar 

  30. J. Norris, Cluster coagulation, Comm. Math. Phys. 209:407–435 (2000).

    Google Scholar 

  31. A. Okubo, Dynamical aspects of animal grouping: Swarms, schools, flocks, and herds, Adv. Biophys. 22:1–94 (1986).

    Google Scholar 

  32. J. Pitman, Coalescents with multiple collisions, Ann. Probab. 27:1870–1902 (1999).

    Google Scholar 

  33. V. S. Safronov, Evolution of the Pre-Planetary Cloud and the Formation of the Earth and Planets (Nauka, Moscow, 1969) (in Russian). V. S. SafronovEngl. transl.: Israel Program for Scientific Translations, Jerusalem, 1972.

    Google Scholar 

  34. J. Schweinsberg, Coalescents with simultaneous multiple collisions, Electr. J. Prob. 5:1–50 (2000).

    Google Scholar 

  35. R. C. Srivastava, A simple model of particle coalescence and breaup, J. Atmos. Sci. 39:1317–1322 (1982).

    Google Scholar 

  36. A. Sznitman, Topics in propagation of chaos, in École d'été de Probabilités de Saint-Flour XIX-1989, Springer Lecture Notes Math. Vol. 1464 (Springer, 1991), pp. 167–255.

  37. D. Wilkins, A geometrical interpretation of the coagulation equation, J. Phys. A: Math. Gen. 15:1175–1178 (1982).

    Google Scholar 

  38. D. Wrzosek, Mass-conservation solutions to the discrete coagulation-fragmentation model with diffusion, Nonlinear Anal. 49:297–314 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolokoltsov, V.N. Hydrodynamic Limit of Coagulation-Fragmentation Type Models of k-Nary Interacting Particles. Journal of Statistical Physics 115, 1621–1653 (2004). https://doi.org/10.1023/B:JOSS.0000028071.96950.12

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000028071.96950.12

Navigation