Skip to main content
Log in

Chemical Modification of Hamster Arylamine N-Acetyltransferase 2 with Isozyme-Selective and Nonselective N-Arylbromoacetamido Reagents

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Arylamine N-acetyltransferases (NATs) catalyze a variety of biotransformation reactions, including N-acetylation of arylamines and O-acetylation of arylhydroxylamines. Chemical modification of hamster recombinant NAT2 with 2-(bromoacetylamino)fluorene (Br-AAF) and bromoacetanilide revealed that Br-AAF is an affinity label for the enzyme whereas bromoacetanilide inactivates NAT2 through a bimolecular alkylation process. Electrospray ionization quadrupole time-of-flight mass spectrometry analysis of Br-AAF–treated NAT2 showed that a single molecule of 2-acetylaminofluorene had been adducted. Peptide sequencing with tandem mass spectrometry identified the catalytically essential Cys68 as the alkylated amino acid. Br-AAF exhibits similar affinity for hamster NAT1 and NAT2, but is a more effective inactivator of NAT1 because, subsequent to the formation of a reversible enzyme–Br-AAF complex, the rate of alkylation of NAT1 is greater than the rate of alkylation of NAT2. Bromoacetanilide alkylates Cys68 and, to a lesser extent, Cys237 of NAT2; it does not exhibit significant selectivity for either NAT1 or NAT2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andres, H. H., Klem, A. J., Schopfer, L. M., Harrison, J. K., and Weber, W. W. (1988). J. Biol. Chem. 263: 7521–7527.

    PubMed  Google Scholar 

  • Beland, F. A., and Kadlubar, F. F. (1990). Metabolic activation and DNA adducts of aromatic amines and nitroaromatic hydrocarbons. Handbook Exp. Pharmacol. 94/I: 267–325.

    Google Scholar 

  • Bergstrom, C. P., Wagner, C. R., Ann, D. K., and Hanna, P. E. (1995). Protein Expr. Purif. 6: 45–55.

    PubMed  Google Scholar 

  • Bradford, M. M. (1976). Anal. Biochem. 72: 248–254.

    PubMed  Google Scholar 

  • Cheon, H. G., Boteju, L. W., and Hanna, P. E. (1992). Mol. Pharmacol. 42: 82–93.

    PubMed  Google Scholar 

  • Cheon, H. G., and Hanna, P. E. (1992). Biochem. Pharmacol. 43: 2255–2268.

    PubMed  Google Scholar 

  • Guo, Z., Vath, G. M., Wagner, C. R., and Hanna, P. E. (2003). J. Protein Chem. 22: 631–642.

    PubMed  Google Scholar 

  • Hanna, P. E. (1994). Adv. Pharmacol. 27: 401–430.

    PubMed  Google Scholar 

  • Hanna, P. E. (1996). Curr. Med. Chem. 3: 195–210.

    Google Scholar 

  • Hein, D. W., Doll, M. A., Fretland, A. J., Gray, K., Deitz, A. C., Feng, Y., et al. (1997). Mutat. Res. 376: 101–106.

    PubMed  Google Scholar 

  • Kato, R., and Yamazoe, Y. (1995). Drug Metab. Rev. 27: 241–256.

    PubMed  Google Scholar 

  • Kitz, R., and Wilson, I. B. (1962). J. Biol. Chem. 237: 3245–3249.

    PubMed  Google Scholar 

  • Levy, G. N., and Weber, W. W. (2002). In Ionnides, c. (ed.), Enzyme Systems That Metabolize Drugs and Other Xenobiotics, John Wiley & Sons, New York, pp. 441–457.

    Google Scholar 

  • Levy, H. M., Leber, P. D., and Ryan, E. M. (1963). J. Biol. Chem. 238: 3654–3659.

    PubMed  Google Scholar 

  • NIH Guidelines for the Laboratory Use of Chemical Carcinogens (1981). NIH Publication No. 81–2385, U.S. Government Printing Office, Washington, DC.

  • Payton, M., Mushtaq, A., Yu, T-W., Wu, L-J., Sinclair, J., and Sim, E. (2001). Microbiology 147: 1137–1147.

    PubMed  Google Scholar 

  • Sinclair, J. C., Sandy, J., Delgoda, R., Sim, E., and Noble, M. E. M. (2000). Nat. Struct. Biol. 7: 560–564.

    PubMed  Google Scholar 

  • Sticha, K. R. K., Sieg, C. A., Bergstrom, C. P., Hanna, P. E., and Wagner, C. R. (1997). Protein Expr. Purif. 10: 141–153.

    PubMed  Google Scholar 

  • Sticha, K. R. K., Bergstrom, C. P., Wagner, C. R., and Hanna, P. E. (1998). Biochem. Pharmacol. 56: 47–59.

    PubMed  Google Scholar 

  • Wagner, C. R., Bergstrom, C. P., Koning, K. R., and Hanna, P. E. (1996). Drug Metab. Disp. 24: 245–253.

    Google Scholar 

  • Wick, M. J., Yeh, H-M., and Hanna, P. E. (1990). Biochem. Pharmacol. 40: 1389–1398.

    PubMed  Google Scholar 

  • Vatsis, K. P., Weber, W. W., Bell, D. A., Dupret, J-M., Evens, D. A. P., Grant, D. M., et al. (1995). Pharmacogenetics, 5: 1–17.

    PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Guo, Z., Vath, G.M. et al. Chemical Modification of Hamster Arylamine N-Acetyltransferase 2 with Isozyme-Selective and Nonselective N-Arylbromoacetamido Reagents. J Protein Chem 23, 153–166 (2004). https://doi.org/10.1023/B:JOPC.0000020082.14480.e2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOPC.0000020082.14480.e2

Navigation