Skip to main content
Log in

The Impact of Arctic Ozone Depletion on Northern Middle Latitudes: Interannual Variability and Dynamical Control

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

We have investigated the effect of the export of Arctic ozone loss, or`dilution', on mid-latitude ozone depletion during the 1990s, and its relation tointerannual meteorological variability. A stratospheric chemical-transport modelincorporated a simple gas-phase ozone scheme with the addition of a parameterisation ofpolar depletion which depended only on temperature and duration of sunlight. Themodel was forced with the U.K. Meteorological Office analyses from 1991 to 1999 covering eight Northern Hemisphere winters. The modelled Arctic ozone column losses wereabout half the magnitude of those in the Antarctic and showed a considerablevariation from year to year. The northern middle latitudes (40°–60° N)were mainly affected through dilution and experienced a variable 5–20%depletion. Year-round there is a depletion of about 1% in northern middle latitudes due toactivation at the pole but there is no evidence that this depletion increases with timeduring this integration. A series of inert tracer experiments for the winters from 1996 to 1999 showed that the dilution occurs primarily at the 560 K and 465 K isentropic levels where up to 30% of the airoriginating northward of 67° N on 1 March is found at 47° N later in spring. Thestrength and persistence of the Arctic vortex were crucial in determining the severity and the timing of the ozone dilution every year by influencing, respectively, the magnitude of the high-latitude depletion and the effectiveness of mixing to lower latitudes. This spring dilution was correlated with the winter/spring planetary wave activity indicating the important role of dynamical processes in regulating the polar-driven mid-latitude ozone depletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, D. G., Holton J. R., and Leovy C.B., 1987: Middle Atmosphere Dynamics, Academic Press, London.

    Google Scholar 

  • Appenzeller, C., Weiss, A. K., and Staehelin, J., 2000: ‘North Atlantic Oscillation modulates total ozone winter trends', Geophys. Res. Lett. 27, 1131-1134.

    Google Scholar 

  • Brasseur, G., Tie, X., Rasch, P., and Lefévre F., 1997: ‘A 3D simulation of the Antarctic ozone hole: Impact of anthropogenic chlorine on the lower stratosphere and upper troposphere', J. Geophys. Res. 102, 8909-8930.

    Google Scholar 

  • Cariolle, D. and Brard D., 1984: ‘The distribution of ozone and active stratospheric species: Results of a two-dimensional atmospheric model', in C. Zerefos and A. Ghazi (eds), Atmospheric Ozone, D. Reidel, Hingham, Mass., pp. 77-81.

    Google Scholar 

  • Cariolle, D. and Déqué, M., 1986: Southern hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model, J. Geophys. Res. 91, 10825-10846.

    Google Scholar 

  • Cariolle, D., Lasserre-Bigory, A., and Royer, J.-F., 1990: A general circulation model simulation of the springtime Antarctic ozone and its impact on mid-latitudes, J. Geophys. Res. 95, 1883-1898.

    Google Scholar 

  • Chipperfield, M. P. and Pyle, J. A., 1998: Model sensitivity studies of Arctic ozone depletion, J. Geophys. Res. 103, 28389-28403.

    Google Scholar 

  • Chipperfield, M. P., 1999: Multiannual simulations with a three-dimensional chemical transport model, J. Geophys. Res. 104, 1781-1805.

    Google Scholar 

  • Coy, L., Nash, E. R., and Newman, P. A., 1997: Meteorology of the polar vortex: Spring 1997, Geophys. Res. Lett 24, 2693-2696.

    Google Scholar 

  • EC, Amanatidis, G. T. (ed.), 1997: European research in the stratosphere, EUR 16986, EU.

  • EC, Amanatidis, G. T. and Harris, N. R. P. (eds), 2001: European research in the stratosphere 1996-2000, EUR 19867, EU.

  • European Ozone Research Coordinating Unit (EORCU), 1999: The Northern hemisphere stratosphere in the winter of 1998/1999, Tech. Report, Cambridge, U.K.

  • Farman, J. C., Gardiner B. G., and Shanklin, J. D., 1985: Large losses of total ozone in Antarctica reveal seasonal ClOx/NO x interaction, Nature 315, 207-210.

    Google Scholar 

  • Fusco, A. C. and Salby, M. L., 1999: Interannual variations of total ozone and their relationship to variations of planetary wave activity, J. Clim. 12, 1619-1629.

    Google Scholar 

  • Grewe, V., Dameris M., and Sausen, R., 1998: Impact of stratospheric dynamics and chemistry on northern hemisphere midlatitude ozone loss, J. Geophys. Res. 103, 25417-25433.

    Google Scholar 

  • Hadjinicolaou, P., 2001: Modelling the impact of interannual meteorological variabilty on stratospheric ozone, Ph.D. Thesis, University of Cambridge, U.K.

    Google Scholar 

  • Hadjinicolaou, P., Jrrar, A., Pyle, J. A., and Bishop, L., 2002: The dynamically-driven long-term trend in stratospheric ozone over northern middle latitudes, Quart. J. Roy. Meteorol. Soc. 128, 1393-1412.

    Google Scholar 

  • Hood, L., Rossi, S., and Baulen, M., 1999: Trends in lower stratospheric zonal winds, Rossby wave breaking behaviour, and column ozone at northern midlatitudes, J. Geophys. Res. 104, 24321-24339.

    Google Scholar 

  • Knudsen, B.M. and Andersen, S. B., 2001: Longitudinal variation in springtime ozone trends, Nature 413, 699-700.

    Google Scholar 

  • Millard, G. A., Lee, A. M., and Pyle, J. A., 2002: A model study of the connection between polar and middle latitude ozone in the northern hemisphere lower stratosphere, J. Geophys. Res., in press.

  • Nash, E. R., Newman, P. A., Rosenfield, J. E., and Schoeberl, M. R., 1996: An objective determination of the polar vortex using Ertel's potential vorticity, J. Geophys. Res 101, 9471-9478.

    Google Scholar 

  • Newman, P. A., Gleason, J. F., McPeters, R. D., and Stolarski, R., 1997: Anomalously low ozone over the Arctic, Geophys. Res. Lett. 24, 2689-2692.

    Google Scholar 

  • Norton, W. A. and Chipperfield, M. P., 1995: Quantification of the transport of chemically activated air from the northern hemisphere polar vortex, J. Geophys. Res. 100, 25817-25840.

    Google Scholar 

  • Pawson, S. and Naujokat, B., 1999: The cold winters of the middle 1990s in the northern lower stratosphere, J. Geophys. Res. 104, 14209-14222.

    Google Scholar 

  • Prather, M. J., 1986: Numerical advection by conservation of second order moments, J. Geophys. Res. 91, 6671-6681.

    Google Scholar 

  • Pyle, J. A., Harris, N. R. P., Farman, J. C., Arnold, F., Braathen, G., Cox, R. A., Faucon, P., Jones, R. L., Megie, G., O'Neill, A., Pommereau, J.-P., Schmidt, U., and Stordal, F., 1994: An overview of the EASOE campaign, Geophys. Res. Lett. 21, 1191-1194.

    Google Scholar 

  • Randel, W. J., Wu, F., Swinbank, R., Nash, J., and O'Neill, A., 1999: Global QBO circulation derived from UKMO stratospheric analyses, J. Atmos. Sci. 56, 457-474.

    Google Scholar 

  • Rex, M., Harris, N. R. P., von der Gathen, P., Lehmann, R., Braathen, G. O., Reimer, E., Beck, A., Chipperfield, M. P., Alfier, R., Allaart, M., O'Connor, F., Dier, H., Dorokhov, V., Fast, H., Gil, M., Kyro, E., Litynska, Z., Mikkelsen, I. S., Molyneux, M. G., Nakane, H., Notholt, J., Rummukainen, M., Viatte, P., and Wenger, J., 1997: Prolonged stratospheric ozone loss in the 1995-1996 Arctic winter, Nature 389, 835-838.

    Google Scholar 

  • Schoeberl, M. R., Lait, L. R., and Newman, P. A., 1992: The structure of the polar vortex, J. Geophys. Res. 97, 7859-7882.

    Google Scholar 

  • Shine, K. P., 1987: The middle atmosphere in the absence of dynamical heat fluxes, Quart. J. Roy. Meteorol. Soc. 113, 603-633.

    Google Scholar 

  • Solomon, S., Portmann, R.W., Garcia, R. R., Thomason, L.W., Poole, L. R., and McCormick, M. P., 1996: The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes, J. Geophys. Res. 101, 6713-6727.

    Google Scholar 

  • Solomon, S., 1999: Stratospheric ozone depletion: A review of concepts and history, Rev. Geophys. 37, 275-316.

    Google Scholar 

  • Staehelin, J., Harris, N. R. P., Appenzeller, C., and Eberhard, J., 2001: Ozone trends: A review, Rev. Geophys. 39, 231-290.

    Google Scholar 

  • Swinbank, R. and O'Neill, A., 1994: A stratosphere-troposphere assimilation system, Mon. Wea. Rev. 122, 686-702.

    Google Scholar 

  • Von der Gathen, P., Rex, M., Harris, N. R. P., Lucic, D., Knudsen, B. M., Braathen, G. O., Debacker, H., Fabian, R., Fast, H., Gil, M., Kyro, E., Mikkelsen, I. S., Staehelin, J., and Varotsos, C., 1995: Observational evidence for chemical ozone depletion over the Arctic in winter 1991-1992, Nature 375, 131-134.

    Google Scholar 

  • Waugh, D. W., Randel, W. J., Pawson, S., Newman, P. A., and Nash, E. R., 1999: Persistence of the lower stratospheric polar vortices, J. Geophys. Res. 104, 27191-27201.

    Google Scholar 

  • World Meteorological Organization (WMO), 1995: Scientific assessment of ozone depletion 1994, Report No. 37, Geneva.

  • World Meteorological Organization (WMO), 1999: Scientific assesment of ozone depletion 1998, Report No. 44, Geneva.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadjinicolaou, P., Pyle, J.A. The Impact of Arctic Ozone Depletion on Northern Middle Latitudes: Interannual Variability and Dynamical Control. Journal of Atmospheric Chemistry 47, 25–43 (2004). https://doi.org/10.1023/B:JOCH.0000012242.06578.6c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOCH.0000012242.06578.6c

Navigation