Skip to main content
Log in

A comparative investigation of biodegradable polyhydroxyalkanoate films as matrices for in vitro cell cultures

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The paper describes the production and investigation of flexible films made of high-purity polyhydroxyalkanoates (PHAs) – polyhydroxybutyrate [poly-(3HB)] and poly-3-hydroxybutyrate-co-poly-3-hydroxyvalerate [poly(3HB-co-3HV)], containing 4–30 mol % hydroxyvalerate. Poly(3HB-co-3HV) films have a more porous structure than poly-(3HB) films, which are more compact, but their surface properties, such as wettability and surface and interface energies, are the same. Sterilisation of the PHA films by conventional methods (heat treatment and γ-irradiation) did not impair their strength. Cells cultured on PHA films exhibited high levels of cell adhesion. Cell morphology, protein synthesis and DNA synthesis were estimated by extent of 3H-thymidine incorporation into the animal cell cultures of various origins (fibroblasts, endothelium cells, and isolated hepatocytes) in direct contact with PHAs. The investigation showed that this material can be used to make matrices for in vitro proliferous cells. The investigated properties of poly-(3HB) and poly(3HB-co-3HV) films proved to be fundamentally similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Anderson and E. A. Dawes, Microbiol. Rev. 54 (1990) 450.

    PubMed  Google Scholar 

  2. A. Steinbüchel, Macromol. Biosci. 1 (2001) 1.

    Article  Google Scholar 

  3. W. Amass, A. Amass and B. Tighe, Polymers Int. 47 (1998) 89.

    Article  Google Scholar 

  4. S. F. Williams and D. P. Martin, in “Series of Biopolymers”, Vol. 4, edited by A. Steinbüchel (Wiley-VCY Verlag GmbH., 2002) p. 91.

  5. K. Sudesh, H. Abe and Y. Doi, Prog. Polym. Sci. 33 (2000) 1471.

    Google Scholar 

  6. R. N. Reuch, A. W. Sparrow and J. G. Ardinner, Biochem. Biophys. Acta. 1123 (1992) 33.

    PubMed  Google Scholar 

  7. L. L. Madison and G. W. Huisman, Microbiol. Mol. Biol. Rev. 63 (1999) 21.

    PubMed  Google Scholar 

  8. C. Chaput, L. Yahia, A. Selmani, C. Rivard and C. Mater, Res. Soc. Symp. Proc. 394 (1995) 111.

    Google Scholar 

  9. T. Saito, K. Tomita, K. Juni and K. Ooba, Biomaterials 12 (1991) 309.

    Article  PubMed  Google Scholar 

  10. S. Gogolewski, M. Javanovic, S. M. Perren, J. G. Dillon and K. M. Hughes, J. Biomed. Mater. Res. 27 (1993) 1135.

    PubMed  Google Scholar 

  11. S. Y. Lee, L. Choi, K. Han and J. Y. Song, Appl. Environ. Microbiol. 65 (1999) 2762.

    PubMed  Google Scholar 

  12. S. F. Williams, D. P. Martin, D. M. Horowitz and O. P. Peoples, Int. J. Biol. Macromol. 25 (1999) 11.

    Article  Google Scholar 

  13. W. Wang, L. J. Chen, J. Ni, J. Weng and C. Y. Yue, J. Mater. Sci.: Mater. Med. 12 (2002) 855.

    Article  Google Scholar 

  14. Y. Xianshuang, K. Zhao and G.-Q. Chen, Biomaterials 23 (2002) 1391.

    Article  PubMed  Google Scholar 

  15. D. Lootz, D. Behrend, S. Kramer, T. Freier, A. Haubold, G. Benkiesser, K.-P. Schmitz and B. Becher, ibid. 22 (2001) 2447.

    Article  PubMed  Google Scholar 

  16. V. I. Sevastianov, N. V. Perova, E. I. Shishatskaya, T. G. Volova and G. S. Kalacheva, J. Biomater. Sci. Polymer. Edn. 14 (2003) 1029.

    Article  Google Scholar 

  17. H. A. Mckenzie and H. S. Wallece, Aust. J. Chem. 55 (1954) 7.

    Google Scholar 

  18. S. Seifter, Arch. Biochem. 191 (1950) 25.

    Google Scholar 

  19. H. Brandl, E. J. Knee and R. C. Fuller, Int. J. Biol. Macromol. 11 (1989) 49.

    Article  PubMed  Google Scholar 

  20. P.-G. De Jennes, Rev. Mod. Phys. 57 (1985) 827.

    Article  Google Scholar 

  21. M. M. Bredford, Anal. Biochem. 72 (1976) 248.

    Article  PubMed  Google Scholar 

  22. E. Scram, “Organic scintillation detectors” (Amsterdam, Elsevier, 1963) p. 212.

    Google Scholar 

  23. Liquid Scintillation Counting, Nuclear-Chicago Techn. Pub. No. 711580., Des Plaines (1962) 40.

  24. D. Lootz, J. Holbe, D. Behrend and K. P. Schmitz, Biomed. Tech. 43 (1998) 428.

    Google Scholar 

  25. D. F. Williams and N. D. Miller, Biomater. Clin. Appl. 8 (1987) 471.

    Google Scholar 

  26. B. Saad, G. Ciardelli, S. Matter, M. Welti, G. K. Uhlschmid, P. Neuenschwander and V. W. Suter, J. Biomed. Mater. Res. 30 (1996) 429.

    PubMed  Google Scholar 

  27. B. Saad, T. D. Hirt, G. K. Uhlschmid, P. Neuenschwander and V. W. Suter, ibid. 36 (1997) 65.

    PubMed  Google Scholar 

  28. B. Saad, G. Ciardelli, S. Matter, M. Welti, G. K. Uhlschmid, P. Neuenschwander and V. W. Suter, ibid. 39 (1998) 594.

    Article  PubMed  Google Scholar 

  29. B. Saad, P. Neuenschwander, G. K. Uhlschmid and V. W. Suter, Int. J. Biol. Macromol. 25 (1999) 293.

    Article  PubMed  Google Scholar 

  30. Standard Practice for Direct Contact Cell Culture Evaluation of Materials for Medical Devices, F813-84, 988, Annual Book of ASTM Standards, Philadelphia ASTM 13 (1991) 277.

  31. International Organization for Standardization ISO10993, Biological Evaluation of Medical Devices, Part 5: Tests for Cytotoxicity: In Vitro Methods, International Organization for Standardization, Case Postale 56 CH-1211, Geneve, Switzerland.

  32. M. Toborek, Y. W. Iee, R. Garrido, S. Kaiser and B. Hennig, Am. J. Clin. Nutr. 75 (2002) 119.

    PubMed  Google Scholar 

  33. D. Williams, Med. Device Technol. 2 (2003) 8.

    Google Scholar 

  34. C. R. H. Raitz, R. J. Ulelevitch, S. D. Wright, C. H. Sibley, A. Ding and C. F. Nathan, Faseb. J. 5 (1991) 2652.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shishatskaya, E.I., Volova, T.G. A comparative investigation of biodegradable polyhydroxyalkanoate films as matrices for in vitro cell cultures. Journal of Materials Science: Materials in Medicine 15, 915–923 (2004). https://doi.org/10.1023/B:JMSM.0000036280.98763.c1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSM.0000036280.98763.c1

Keywords

Navigation