Skip to main content
Log in

Bioactivity of metallic biomaterials with anatase layers deposited in acidic titanium tetrafluoride solution

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A simple and versatile treatment was developed to provide various metallic biomaterials such as Ti, NiTi, Ta and SUS 316L stainless steel with in vitro bioactivity or ability to deposit carbonate-incorporated apatite in a simulated body fluid (Kokubo solution). A well-crystallized anatase layer deposited on the metallic biomaterials surfaces after soaking them at 60 °C for 24 h in an aqueous solution of titanium tetrafluoride (40 mM) whose pH was adjusted to 1.9 with HCl. The as-coated anatase layers did not deposit apatite. When heated at 300 °C they were so bioactive as to deposit apatite within 5 day(s) in the Kokubo solution. The trace amount of fluorine weakly bound in the as-coated anatase layers was suggested to be one of the factors that suppressed the bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Park and R. S. Lakes, in “Biomaterials: An Introduction”, 2nd edn (Plenum Press, New York, 1992) p. 79.

    Google Scholar 

  2. C. P. Sharma and W. Paul, J. Biomed. Mater. Res. 26 (1992) 1179.

    Google Scholar 

  3. W. R. Lacefield, in “An Introduction to Bioceramics,” edited by L. L. Hench and J. Wilson (World Scientific, Singapore, 1993) p. 223.

    Google Scholar 

  4. T. Miyazaki, H. M. Kim, F. Miyaji, T. Kokubo, H. Kato and T. Nakamura, J. Biomed. Mater. Res. 50 (2000) 35.

    Google Scholar 

  5. L. L. Hench, Biomaterials 19 (1998) 1419.

    Google Scholar 

  6. K. Takatsuka, T. Yamamuro, T. Nakamura and T. Kokubo, J. Biomed. Mater. Res. 29 (1995) 157.

    Google Scholar 

  7. J. Weng, Q. Liu, J. G. C. Wolke, X. D. Zhang and K. De Groot, Biomaterials 18 (1997) 1027.

    Google Scholar 

  8. D. R. Bloyer, J. M. Gomez-Va, E. Saiz, J. M. Mcnaney, R. M. Cannon and A. P. Tomsia, Acta. Mater. 47 (1999) 4221.

    Google Scholar 

  9. X. Y. Liu, C. X. Ding and Z. Y. Wang, Biomaterials 22 (2001) 2007.

    Google Scholar 

  10. H. Zeng, K. K. Chitur and W. R. Lacefield, ibid. 20 (1999) 443.

    Google Scholar 

  11. J. W. M. Vehof, P. H. M. Spauwen and J. A. Jansen, ibid. 21 (2000) 2003.

    Google Scholar 

  12. H. M. Kim, F. Miyaji, T. Kokubo and A. Nakamura, J. Biomed. Mater. Res. 32 (1996) 409.

    Google Scholar 

  13. M. Wei, A. J. Milthorpe, C. C. Sorrell and J. H. Evans, J. Sol-Gel Sci. Techn. 21 (2001) 39.

    Google Scholar 

  14. X. X. Wang, S. Hayakawa, K. Tsuru and A. Osaka, J. Biomed. Mater. Res. 52 (2000) 171.

    Google Scholar 

  15. T. Miyazaki, H. M. Kim, F. Miyaji, T. Kokubo, H. Kato and T. Nakamura, ibid. 50 (2000) 35.

    Google Scholar 

  16. T. Miyazaki, H. M. Kim, F. Miyaji, T. Kokubo, H. Kato and T. Nakamura, J. Mater. Sci.: Mater. Med. 12 (2001) 683.

    Google Scholar 

  17. H. M. Kim, T. Miyazaki, T. Kokubo and T. Nakamura, in “Bioceramics 13”, edited by S. Giannini and A. Moroni (Trans. Tech. Publications Ltd, Switzerland, 2001) p. 47.

    Google Scholar 

  18. M. Uchida, H. M. Kim, T. Kokubo and T. Nakamura, in “Bioceramics 12”, edited by H. Ohgushi, G. W. Hastings and T. Yoshikawa (World Scientific, NJ, 1999) p. 149.

    Google Scholar 

  19. P. J. Li, I. Kangasniemi, K. De Groot and T. Kokubo, J. Am. Ceram. Soc. 77 (1994) 1307.

    Google Scholar 

  20. T. Peltola, M. Patsi, H. Rahiala, I. Kangasniemi and A. Yli-Urpo, J. Biomed. Mater. Res. 41 (1998) 504.

    Google Scholar 

  21. J. L. Keddie, P. V. Braun and E. P. Giannelis, J. Am. Ceram. Soc. 77 (1994) 1592.

    Google Scholar 

  22. Y. Takahashi, A. Ohsugi, T. Arafuka, T. Ohya, T. Banand and Y. Ohya, J. Sol-Gel Sci. Techn. 17 (2000) 227.

    Google Scholar 

  23. K. Shimizu, H. Imai, H. Hirashima and K. Tsukuma, Thin Solid Films 351 (1999) 220.

    Google Scholar 

  24. U. Posset, E. Locklin, R. Thull and W. Kiefer, J. Biomed. Mater. Res. 40 (1998) 640.

    Google Scholar 

  25. C. Ohtsuki, H. Iida, S. Hayakawa and A. Osaka, ibid. 35 (1997) 39.

    Google Scholar 

  26. E. Gaul, J. Chem. Edu. 70 (1993) 176.

    Google Scholar 

  27. S. Hayakawa, A. Nakao, C. Ohtsuki, A. Osaka, S. Matsumoto and Y. Miura, J. Mater. Res. 13 (1998) 739.

    Google Scholar 

  28. Y. Saito and Y. Nakazawa, J. Appl. Phys. Jpn. 36 (1997) 1466.

    Google Scholar 

  29. K. Ninomiya, K. Suzuki, S. Nishiatsu and O. Okada, J. Appl. Phys. 58 (1985) 1177.

    Google Scholar 

  30. A. Nakao, K. Tsuru, S. Hayakawa, C. Ohtsuki and A. Osaka, in “Bioceramics 9”, edited by T. Kokubo, T. Nakamura and F. Miyaji (Cambridge University Press, Cambridge, 1996) p. 131.

    Google Scholar 

  31. E. Muñoz, J. L. BoldÚ, E. Andrade, O. Novaro, X. Bokhimi, T. LÓpez and R. GÓmez, J. Am. Ceram. Soc. 84 (2001) 392.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Hayakawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, JM., Xiao, F., Hayakawa, S. et al. Bioactivity of metallic biomaterials with anatase layers deposited in acidic titanium tetrafluoride solution. Journal of Materials Science: Materials in Medicine 14, 1027–1032 (2003). https://doi.org/10.1023/B:JMSM.0000003998.37583.d7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSM.0000003998.37583.d7

Keywords

Navigation