Skip to main content
Log in

A structure-activity relationship study of catechol-O-methyltransferase inhibitors combining molecular docking and 3D QSAR methods

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A panel of 92 catechol-O-methyltransferase (COMT) inhibitors was used to examine the molecular interactions affecting their biological activity. COMT inhibitors are used as therapeutic agents in the treatment of Parkinson's disease, but there are limitations in the currently marketed compounds due to adverse side effects. This study combined molecular docking methods with three-dimensional structure-activity relationships (3D QSAR) to analyse possible interactions between COMT and its inhibitors, and to incite the design of new inhibitors. Comparative molecular field analysis (CoMFA) and GRID/GOLPE models were made by using bioactive conformations from docking experiments, which yielded q2 values of 0.594 and 0.636, respectively. The docking results, the COMT X-ray structure, and the 3D QSAR models are in agreement with each other. The models suggest that an interaction between the inhibitor's catechol oxygens and the Mg2+ ion in the COMT active site is important. Both hydrogen bonding with Lys144, Asn170 and Glu199, and hydrophobic contacts with Trp38, Pro174 and Leu198 influence inhibitor binding. Docking suggests that a large R1 substituent of the catechol ring can form hydrophobic contacts with side chains of Val173, Leu198, Met201 and Val203 on the COMT surface. Our models propose that increasing steric volume of e.g. the diethylamine tail of entacapone is favourable for COMT inhibitory activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Männistö, P.T. and Kaakkola, S., Pharmacol. Rev., 51 (1999) 593.

    PubMed  Google Scholar 

  2. Axelrod, J. and Tomchick, R., J. Biol. Chem., 233 (1958) 702.

    PubMed  Google Scholar 

  3. Guldberg, H.C. and Marsden, C.A., Pharmacol. Rev., 27 (1975) 135.

    PubMed  Google Scholar 

  4. Bonifati, V. and Meco, G., Pharmacol. Ther., 81 (1999) 1.

    Article  PubMed  Google Scholar 

  5. Gordin, A., Kaakkola, S. and Teräväinen, H., Adv. Neurol., 91 (2003) 237.

    PubMed  Google Scholar 

  6. Guttman, M., Leger, G., Reches, A., Evans, A., Kuwabara, H., Cedarbaum, J.M. and Gjedde, A., Mov. Disord., 8 (1993) 298.

    Article  PubMed  Google Scholar 

  7. Najib, J., Clin. Ther., 23 (2001) 802.

    Article  PubMed  Google Scholar 

  8. De Santi, C., Giulianotti, P.C., Pietrabissa, A., Mosca, F. and Pacifici, G.M., Eur. J. Clin. Pharmacol., 54 (1998) 215.

    Article  PubMed  Google Scholar 

  9. Zurcher, G., Colzi, A. and Da Prada, M.J., Neural. Transm. Suppl., 32 (1990) 375.

    Google Scholar 

  10. Micek, S.T. and Ernst, M.E., Am. J. Health Syst. Pharm., 56 (1999) 2195.

    PubMed  Google Scholar 

  11. Olanow, C.W., Arch. Neurol., 57 (2000) 263.

    Article  PubMed  Google Scholar 

  12. Taskinen, J., Vidgren, J., Ovaska, M., Bäckström, R., Pippuri, A. and Nissinen, E., Quant. Struct.-Act. Relat., 8 (1989) 210.

    Google Scholar 

  13. Lotta, T., Taskinen, J., Bäckström, R. and Nissinen, E., J. Comput.-Aided Mol. Des., 6 (1992) 253.

    Article  Google Scholar 

  14. Cramer III, R.D., Patterson, D.E. and Bunce, J.D., J. Am. Chem. Soc., 110 (1988) 5959.

    Article  Google Scholar 

  15. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, I.N., Shindyalov, P.E. and Bourne, P.E., Nucleic Acids Res., 28 (2000) 235.

    Article  PubMed  Google Scholar 

  16. Vidgren, J., Svensson, L.A. and Liljas, A., Nature, 368 (1994) 354.

    Article  PubMed  Google Scholar 

  17. Buolamwini, J.K. and Assefa, H., J. Med. Chem., 45 (2002) 841.

    Article  PubMed  Google Scholar 

  18. Sippl, W., J. Comput.-Aided Mol. Des., 14 (2000) 559.

    Article  PubMed  Google Scholar 

  19. Liu, H., Huang, X., Shen, J., Luo, X., Li, M., Xiong, B., Chen, G., Yang, Y., Jiang, H. and Chen, K., J. Med. Chem., 45 (2002) 4816.

    Article  PubMed  Google Scholar 

  20. Böhm, H.J., J. Comput.-Aided Mol. Des., 8 (1994) 243.

    Article  PubMed  Google Scholar 

  21. Goodford, P.J., J. Med. Chem., 28 (1985) 849.

    Article  PubMed  Google Scholar 

  22. Baroni, M., Costantino, G., Cruciani, G., Riganelli, D., Valigi, R. and Clementi, S., Quant. Struct.-Act. Relat., 12 (1993) 9.

    Google Scholar 

  23. Sybyl 6.8, Tripos Inc., St. Louis, MO.

  24. Sadowski, J. and Gasteiger, J., Chem. Rev., 93 (1993) 2567.

    Article  Google Scholar 

  25. Sadowski, J., Gasteiger, J. and Klebe, G., J. Chem. Inf. Comput. Sci., 34 (1994) 1000.

    Article  Google Scholar 

  26. Clark, M., Cramer III, R.D. and Van Opdenbosch, N., J. Comput. Chem., 10 (1989) 982.

    Article  Google Scholar 

  27. Rarey, M., Kramer, B., Lengauer, T. and Klebe, G., J. Mol. Biol., 261 (1996) 470.

    Article  PubMed  Google Scholar 

  28. Gasteiger, J. and Marsili, M., Tetrahedron, 36 (1980) 3219.

    Article  Google Scholar 

  29. Purcell, W.P. and Singer, J.A., J. Chem. Eng. Data 12 (1967) 235.

    Article  Google Scholar 

  30. Stewart, J.J., J. Comput.-Aided Mol. Des., 4 (1990) 1.

    Article  PubMed  Google Scholar 

  31. Besler, B.H., Merz, K.M. and Kollman, P.A., J. Comput. Chem., 11 (1990) 431.

    Article  Google Scholar 

  32. Cramer III, R.D., Bunce, J.D. and Patterson, D.E., Quant. Struct.-Act. Relat., 7 (1988) 18.

    Google Scholar 

  33. Oprea, T.I. and Garcia, A.E., J. Comput.-Aided Mol. Des., 10 (1996) 186.

    Article  PubMed  Google Scholar 

  34. Pastor, M., Cruciani, G. and Clementi, S., J. Med. Chem., 40 (1997) 1455.

    Article  PubMed  Google Scholar 

  35. Clark, R.D., Strizhev, A., Leonard, J.M., Blake, J.F. and Matthew, J.B., J. Mol. Graph. Model., 20 (2002) 281.

    Article  PubMed  Google Scholar 

  36. Wallace, A.C., Laskowski, R.A. and Thornton, J.M., Protein Eng., 8 (1995) 127.

    PubMed  Google Scholar 

  37. Lehtonen, J. V., Rantanen, V.-V., Still, D.-J., Ekholm, J., Björklund, D., Iftikhar, Z., Huhtala, M., Jussila, A., Jaakkola, J., Pentikäinen, O.T., Nyrönen, T.A., S.T., Gyllenberg, M. and Johnson, M.S., BODIL: a molecular modeling environment for structure-function analysis and drug discovery, unpublished, http://www.abo.fi/fak/mnf/bkf/ research/johnson/bodil.html.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tervo, A.J., Nyrönen, T.H., Rönkkö, T. et al. A structure-activity relationship study of catechol-O-methyltransferase inhibitors combining molecular docking and 3D QSAR methods. J Comput Aided Mol Des 17, 797–810 (2003). https://doi.org/10.1023/B:JCAM.0000021831.47952.a7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCAM.0000021831.47952.a7

Navigation