Skip to main content
Log in

A New Method to Measure Small Amounts of Solute Atoms on Planar Defects and Application to Inversion Domain Boundaries in Doped Zinc Oxide

  • Published:
Interface Science

Abstract

We demonstrate the application of a new method of analytical transmission electron microscopy for measuring very accurately small amounts of solute atoms within a well-defined planar defect such as a stacking fault, grain boundary or an interface. The method is based on acquiring several spectra with different electron beam diameters from the same position centred on the defect. It can be applied to energy-dispersive X-ray microanalysis (EDXS) or electron energy-loss spectroscopy (EELS) and does not necessitate a scanning unit. The accuracy has been tested numerically under different conditions using simulations for a specific geometry and has been found to be substantially better than that of any other current standard technique. Our calculations suggest an extremely high accuracy theoretically achievable in the determination of e.g. the Gibbsian solute excess or the doping level of a grain boundary down to about ±1% of an effective monolayer, i.e. ±0.1 atoms/nm2 under typical experimental conditions. The method has been applied to zinc oxide, which forms inversion domain boundaries (IDBs) when doped with different transition metal oxides such as SnO2 or Sb2O3. We obtained an experimental precision of ±0.4 atoms/nm2, which has allowed us to solve the atomic structure of the IDBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.D. Hondros and M.P. Seah, Scripta Metall. 6(10), 1007 (1972).

    Google Scholar 

  2. C.J. McMahon Jr. and L. Marchut, J. Vac. Sci. Tecnol. 15(2), 450 (1978).

    Google Scholar 

  3. M.P. Seah and E.D. Hondros, Proc. Royal Soc. London A 335(1601), 191 (1973).

    Google Scholar 

  4. H. Müllejans and J. Bruley, Ultramicroscopy 53(4), 351 (1994).

    Google Scholar 

  5. L.E. Rehn, P.R. Okamoto, D.I. Potter, and H. Wiedersich, J. Nucl. Mater. 74(2), 242 (1978).

    Google Scholar 

  6. A. Recnik, M. Ceh, and D. Kolar, J. Eur. Ceram. Soc. 21(10/11), 2117 (2001).

    Google Scholar 

  7. A. Recnik, N. Daneu, T. Walther, and W. Mader, J. Am. Ceram. Soc. 84(11), 2657 (2001).

    Google Scholar 

  8. J. Bruley, U. Bremer, and V. Krasevec, J. Am. Ceram. Soc. 75(11), 3127 (1992).

    Google Scholar 

  9. J. Bruley, T. Höche, H.J. Kleebe, and M. Rühle, J. Am. Ceram. Soc. 77(9), 2273 (1994).

    Google Scholar 

  10. V.J. Keast and D.B. Williams, J. Microsc. 199(1), 45 (2000).

    Google Scholar 

  11. U. Alber, H. Müllejans, and M. Rühle, Ultramicroscopy 69(2), 105 (1997).

    Google Scholar 

  12. J. Bruley, J. Cho, H.M. Chan, M.P. Harmer, and J.M. Rickman, J. Am. Ceram Soc. 82(10), 2865 (1999).

    Google Scholar 

  13. V.J. Keast and D.B. Williams, Acta Mater. 47(15/16), 3999 (1999).

    Google Scholar 

  14. J. Bruley, Philos. Mag. Lett. 66(1), 47 (1992).

    Google Scholar 

  15. H. Gu, R.M. Cannon, and M. Rühle, J. Mater. Res. 13(2), 376 (1998).

    Google Scholar 

  16. D.A. Shashkov and D.N. Seidman, Mater. Science Forum 207(1), 429 (1996).

    Google Scholar 

  17. D.A. Shashkov, D.A. Muller, and D.N. Seidman, Acta Mater. 47(15/16), 3953 (1999).

    Google Scholar 

  18. D. Isheim, O.C. Hellman, D.N. Seidman, F. Danoix, A. Bostel, and D. Blavette, Microsc. Microanal. 7(5), 424 (2001).

    Google Scholar 

  19. J.J. Hren, J.I. Goldstein, and D.C. Joy (Eds.), in Introduc-tion to Analytical Electron Microscopy (Plenum, New York, 1979).

    Google Scholar 

  20. S.A. Collett, L.M. Brown, and M.H. Jacobs, in Proc.Quant.Mi-croanal.with High Spatial Resolution, Manchester (The Metals Society, London, 1981), p. 159.

    Google Scholar 

  21. T. Walther and C.J. Humphreys, J. Cryst. Growth 197(1/2), 113 (1999).

    Google Scholar 

  22. V.J. Keast and D.B. Williams, in Proc.EMAG 97, Cambridge, edited by J.M. Rodenburg, Inst. Phys. Conf. Ser. (IoP, Bristol, 1997), Vol. 153, p. 299.

    Google Scholar 

  23. R.D. Carter, D.L. Damcott, M. Atzmon, G.S. Was, S.M. Bruemmer, and E.A. Kenik, J. Nucl. Mater. 211(1), 70 (1994).

    Google Scholar 

  24. D.B. Williams, A.J. Papworth, and M. Watanabe, J. Electr. Microsc. 51(S), 113 (2002).

    Google Scholar 

  25. G. Drazic and M. Komac, in Proc.13th Int.Cong.Electron Microsc., edited by B. Jouffrey and C. Colliex (les editions de physique, Les Ulis, Paris, 1994), Vol. 1, p. 685.

    Google Scholar 

  26. J.I. Goldstein, J.L. Costley, G.W. Lorimer, and S.J.B. Reed, in Proc.Anal.Electr.Microsc., Scanning Electron Microsc. (IIT Res. Inst., Chicago, 1977), Vol. 1, p. 315.

    Google Scholar 

  27. S.J.B. Reed, Ultramicroscopy 7(4), 405 (1982).

    Google Scholar 

  28. T. Walther, A. Recnik, and N. Daneu, in Proc.15th Int.Cong.Electron Microsc., edited by J. Engelbrecht, M. Witcomb, and R. Cross (Microsc. Soc. South Africa, Onderstepoort, Durban, 2002), Vol. 1, p. 535.

    Google Scholar 

  29. N. Daneu, A. Recnik, S. Bernik, and D. Kolar, J. Am. Ceram Soc. 83(12), 3165 (2000).

    Google Scholar 

  30. N. Daneu, T. Walther, and A. Recnik, in Proc.15th Int.Cong.Electron Microsc., edited by J. Engelbrecht, T. Sewell, M. Witcomb, and R. Cross (Microsc. Soc. South Africa, Onderstepoort, Durban, 2002), Vol. 3, p. 63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walther, T., Daneu, N. & Recnik, A. A New Method to Measure Small Amounts of Solute Atoms on Planar Defects and Application to Inversion Domain Boundaries in Doped Zinc Oxide. Interface Science 12, 267–275 (2004). https://doi.org/10.1023/B:INTS.0000028656.12913.8a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INTS.0000028656.12913.8a

Navigation