Skip to main content
Log in

Electronic–Rotational Coupling and c 1 Σ u b 1 Σ + g Transition Probability in the Oxygen Molecule

  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

A theory was proposed for the formation of intensity of the forbidden singlet–singlet c 1Σ u b 1Σ g + transition in the oxygen molecule. The dipole moments of transitions that contribute to the formation of the intensity of the cb transition in the range of internuclear distances of 1.2–2.0 Å were calculated using the configuration interaction method with a valence triple-zeta basis set. Based on these results, the electric dipole moment for the c 1Σ u b 1Σ g + transition was calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Slanger, T.G., Cosby, P.C., and Huestis, D.L., J. Geophys. Res., 2003, vol. 123, p. 426.

    Google Scholar 

  2. Slanger, T.G., Cosby, P.C., Huestis, D.L., and Osterbrock, D.E., J. Geophys. Res., 2000, vol. 105, p. 20557.

    Google Scholar 

  3. Krasnopolsky, V.A., Krysko, A.A., Rogachev, V.N., and Parshev, V.A., Cosmic Res. ( Engl. Transl. ), 1976, vol. 14, p. 789.

    Google Scholar 

  4. Slanger, T.G. and Huestis, D.L., J. Geophys. Res., 1983, vol. 88, p. 4137.

    Google Scholar 

  5. Huber, K.-P. and Herzberg, G., Molecular Spectra and Molecular Structure: 4. Constants of Diatomic Molecules, New York: Van Nostrand, 1979.

    Google Scholar 

  6. Minaev, B.F., Phys. Chem., Chem. Phys., 1999, vol. 1, p. 3403.

    Google Scholar 

  7. Minaev, B.F. and Muldakhmetov, Z.M., Opt. Spektrosk., 1984, vol. 56, no. 6, p. 48.

    Google Scholar 

  8. Klotz, R. and Peyerimhoff, S.D., Mol. Phys., 1986, vol. 57, no. 3, p. 573.

    Google Scholar 

  9. Minaev, B.F. and Minaeva, V.A., Phys. Chem., Chem. Phys., 2001, vol. 3, p. 720.

    Google Scholar 

  10. Minaev, B.F., J. Struct. Chem. Theor. Chem., 1989, vol. 183, p. 207.

    Google Scholar 

  11. Lee, L.C., Slanger, T.G., and Black, G., J. Chem. Phys., 1977, vol. 67, p. 5602.

    Google Scholar 

  12. Prabhakar, R., Siegbahn, P.E.M., Minaev, B.F., and Agren, H., J. Phys. Chem., 2002, vol. 106, p. 3742.

    Google Scholar 

  13. Stegman, J. and Murtagh, D.P., Planet. Space Sci., 1988, vol. 36, p. 927.

    Google Scholar 

  14. Bates, D.R., Planet. Space Sci., 1988, vol. 36, p. 883.

    Google Scholar 

  15. McDade, I.C., Murtagh, D.P., Greer, R.G.H., Dickinson, P.H.G., Witt, G., Stegman, J., Llewellyn, E.J., Thomas, L., and Jenkins, D.B., Planet. Space Sci., 1986, vol. 34, p. 789.

    Google Scholar 

  16. Hinkey, R.K., Hall, J.A., Walker, T.E.H., and Richards, W.G., J. Phys. B: At., Mol. Opt. Phys., 1972, vol. 5, p. 204.

    Google Scholar 

  17. Dunning, T.H., J. Chem. Phys., 1971, vol. 55, no. 22, p. 716.

    Google Scholar 

  18. Schaefer, H.F., Modern Theoretical Chemistry, New York: Plenum, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minaev, B.F., Yashchuk, L.B. Electronic–Rotational Coupling and c 1 Σ u b 1 Σ + g Transition Probability in the Oxygen Molecule. High Energy Chemistry 38, 209–214 (2004). https://doi.org/10.1023/B:HIEC.0000035405.34389.fa

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HIEC.0000035405.34389.fa

Keywords

Navigation