Skip to main content
Log in

Chromosome painting comparison of Leontopithecus chrysomelas (Callitrichine, Platyrrhini) with man and its phylogenetic position

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Using human probes of whole chromosomes, the homoeologies between human and Leontopithecus chrysomelas (Platyrrhini) karyotypes were established. Thirty-three conserved segments were observed between the two species. Intrachromosomal rearrangements between the two species were identified using hybridization of chromosome arm probes of human chromosomes 1 and 3. We also used chromosomal data to investigate phylogenetic relationships of Callitrichines. These data were encoded using Cebus capucinus, a species which kept fairly ancestral chromosomes, as reference. Two equi-parsimonious trees, including reversion or convergence events, were obtained. The monophyly of Callitrichines is confirmed. They share nine chromosomal rearrangements at least. The Cebuella-Callithrix group forms a clade sharing five rearrangements at least. According to the tree considered, the Tamarins, Leontopithecus and Saguinus share two chromosomal rearrangements restricted to these two taxa or none. Callimico accumulated seven chromosomal rearrangements unshared with other taxa, at least. To avoid convergence and reversion events, we propose the hypothesis of a network (or populational) evolution. Six chromosomal rearrangements would have occurred during the period of this network evolution. Finally, the karyotype of the last common ancestor to all Callitrichines has been reconstructed. It possessed 48 chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aniskin VM, Lavrenchenko LA, Varshavskii AA, Milishnikov AN (1998)Chromosome arrangements and cytogenetic differentiation of two species of African mice of the genus Mus (Rodentia,Muridae).Genetika 34:93 -99.

    PubMed  CAS  Google Scholar 

  • Aurias A, Dutrillaux B(1986) Apossible newtype of chromosome rearrangement:telomere -centromere translocation (tct) followed by double duplication.Hum Genet 72:25 -26.

    Article  PubMed  CAS  Google Scholar 

  • Barros RM, Nagamachi CY, Pieczarka JC et al.(2003) Chromosomal studies in Callicebus donacophilus pallescens, with classic and molecular cytogenetic approaches:multi-colour FISH using human and Saguinus oedipus painting probes.Chromosome Res 11:327 -334.

    Article  PubMed  CAS  Google Scholar 

  • Canavez F, Alves G, Fanning TG, Seuanez HN (1996) Comparative karyology and evolution of the Amazonian Callithrix (Platyrrhini,Primates).Chromosoma 104:348 - 357.

    PubMed  CAS  Google Scholar 

  • Chowdhary BP, Raudsepp T, Fronicke L, Scherthan H (1998) Emerging patterns of comparative genome organization in some mammalian species as revealed by Zoo-FISH.Genome Res 8:577 -589.

    PubMed  CAS  Google Scholar 

  • Consigliere S, Stanyo R, Koehler U, Agoramoorthy G, Wienberg J (1996) Chromosome painting de nes genomic rearrangements between red howler monkey subspecies. Chromosome Res 4:264 -270.

    Article  PubMed  CAS  Google Scholar 

  • Di Berardino D, Iannuzzi L (1981) Chromosome banding homologies in Swamp and Murrah buffalo.J Hered 72:183 - 188.

    PubMed  CAS  Google Scholar 

  • Dutrillaux B (1975) Sur la nature et l’ origine des chromosomes humains.Monography of Annales de Génétique.L’ expansion Scienti que (Paris).

  • Dutrillaux B (1979) Very large analogy of chromosome banding between Cebus capucinus (Platyrrhini)and man. Cytogenet Cell Genet 24:84 -94.

    PubMed  CAS  Google Scholar 

  • Dutrillaux B, Couturier J (1981a) The ancestral karyotype of platyrrhine monkeys.Cytogenet Cell Genet 30:232 -242.

    PubMed  CAS  Google Scholar 

  • Dutrillaux B, Couturier J (1981b)La Pratique de l’ Analyse Chromosomique.Paris: Masson.

    Google Scholar 

  • Dutrillaux B, Couturier J, Viegas-Pequignot E (1986a) Evolution chromosomique des Platyrhiniens.Mammalia 50: 56 -81.

    Google Scholar 

  • Dutrillaux B, Couturier J, Sabatier L, Muleris M, Prieur M (1986b) Inversions in evolution of man and closely related species.Ann Genet 29:195 -202.

    PubMed  CAS  Google Scholar 

  • Dutrillaux B, Couturier J, Muleris M, Rumpler Y, Viegas-Pequignot E (1986c) Relations chromosomiques entre sous-ordres et infra-ordres,et schéma évolutif général des Primates.Mammalia 50:108 -121.

    Google Scholar 

  • Dutrillaux B, Lombard M, Carroll JB, Martin RD (1988) Chromosomal af nities of Callimico goeldi (Platyrrhini)and characterization of a Y-autosome translocation in the male. Folia Primatol (Basel)50:230 -236.

    Article  CAS  Google Scholar 

  • Fronicke L, Wienberg J (2001) Comparative chromosome painting de nes the high rate of karyotype changes between pigs and bovids.Mamm Genome 12:442 -449.

    Article  PubMed  CAS  Google Scholar 

  • Haig D (1999)A brief history of human autosomes.Phil Trans R Soc Lond B 354:1447 -1470.

    Article  CAS  Google Scholar 

  • Kay R (1990) The phyletic relationships of extant and fossil Pitheciinae (Platyrrhini,Anthropoidea).J Hum Evol 19: 175 -208.

    Article  Google Scholar 

  • Morescalchi MA, Schempp W, Consigliere S, Bigoni F, Wienberg J, Stanyon R (1997) Mapping chromosomal homology between humans and the black-handed spider monkey by.uorescence in situ hybridization.Chromosome Res 5:527 -536.

    Article  PubMed  CAS  Google Scholar 

  • Mundy NI, Kelly J (2001) Phylogeny of lion tamarins (Leontopithecus spp)based on interphotoreceptor retinol binding protein intron sequences.Am J Primatol 54: 33 -40.

    Article  PubMed  CAS  Google Scholar 

  • Murphy WJ, Stanyon R, O'Brien SJ (2001) Evolution of mammalian genome organization inferred from comparative gene mapping.Genome Biol 2:REVIEWS0005.

    Google Scholar 

  • Nagamachi CY, Pieczarka JC, Schwarz M, Barros RM, Mattevi MS (1997) Chromosomal similarities and differ-ences between tamarins,Leontopithecus and Saguinus (Platyrrhini,Primates).Am J Primatol 43:265 -276.

    Article  PubMed  CAS  Google Scholar 

  • Nagamachi CY, Pieczarka JC, Muniz JA, Barros RM, Mattevi MS (1999) Proposed chromosomal phylogeny for the South American primates of the Callitrichidae family (Platyrrhini). Am J Primatol 49:133 -152.

    Article  PubMed  CAS  Google Scholar 

  • Napier JR, Napier PH (1967)A Handbook of Living Primates. London: Academic Press.

    Google Scholar 

  • Neusser M, Stanyon R, Bigoni F, Wienberg J, Muller S (2001) Molecular cytotaxonomy of New World monkeys (Pla-tyrrhini)-comparative analysis of ve species by multi-color chromosome painting gives evidence for a classi cation of Callimico goeldii within the family of Callitrichidae. Cytogenet Cell Genet 94:206 -215.

    Article  PubMed  CAS  Google Scholar 

  • Olert J, Schmid M (1978) Comparative analysis of karyotypes in European shrew species.I.The sibling species Sorex araneus and S.gemellus:Q-bands,G-bands,and position of NORs.Cytogenet Cell Genet 20:308 -322.

    PubMed  CAS  Google Scholar 

  • Pastorini J, Forstner MR, Martin RD, Melnick DJ (1998) A reexamination of the phylogenetic position of Callimico (primates)incorporating new mitochondrial DNA sequence data.J Mol Evol 47:32 -41.

    Article  PubMed  CAS  Google Scholar 

  • Perrotez C (1974) Etude du caryotype du marmouset (Cal-lithrixjacchus )avec les bandes R.Exp Animale 7:173 -180.

    Google Scholar 

  • Popescu P, Hayes H, Dutrillaux B (1998)Techniques de Cytogénétique Animale.Paris: INRA.

    Google Scholar 

  • Richard F, Lombard M, Dutrillaux B (1996) Zoo-FISH suggests a complete homology between human and capuchin monkey (Platyrrhini)euchromatin.Genomics 36:417 -423.

    Article  PubMed  CAS  Google Scholar 

  • Richard F, Lombard M, Dutrillaux B (2000) Phylogenetic origin of human chromosomes 7,16,and 19 and their homologs in placental mammals.Genome Res 10:644 -651.

    Article  PubMed  CAS  Google Scholar 

  • Richard F, Lombard M, Dutrillaux B (2003) Reconstruction of the ancestral karyotype of eutherian mammals.Chro-mosome Res 11:605 -618.

    Article  CAS  Google Scholar 

  • Schneider H, Canavez FC, Sampaio I, Moreira MA, Tagliaro CH, Seuanez HN (2001) Can molecular data place each neotropical monkey in its own branch?Chromosoma 109: 515 -523.

    PubMed  CAS  Google Scholar 

  • Sena L, Vallinoto M, Sampaio I, Schneider H, Ferrari SF, Schneider MP (2002) Mitochondrial COII gene sequences provide new insights into the phylogeny of marmoset species groups (Callitrichidae,Primates).Folia Primatol (Basel)73: 240 -251.

    Article  Google Scholar 

  • Seuanez HN, Forman L, Alves G (1988) Comparative chromosomemorphologyinthreeCallitrichidgenera:Cebuella, Callithrix,and Leontopithecus.J Hered 79:418 -424.

    PubMed  CAS  Google Scholar 

  • Sherlock JK, Grifin DK, Delhanty JD, Parrington JM (1996) Homologies between human and marmoset (Callithrix jacchus )chromosomes revealed by comparative chromosome painting.Genomics 33:214 -219.

    Article  PubMed  CAS  Google Scholar 

  • Singer SS, Schmitz J, Schwiegk C, Zischler H (2003) Molecular cladistic markers in New World monkey phylogeny (Platyrrhini,Primates).Mol Phylogenet Evol 26: 490 -501.

    Article  PubMed  CAS  Google Scholar 

  • Stanyon R, Consigliere S, Muller S, Morescalchi A, Neusser M, Wienberg J (2000) Fluorescence in situ hybridization (FISH)maps chromosomal homologies between the dusky titi and squirrel monkey.Am J Primatol 50:95 -107.

    Article  PubMed  CAS  Google Scholar 

  • Stanyon R, Consigliere S, Bigoni F, Ferguson-Smith M, O'Brien PC, Wienberg J (2001). Reciprocal chromosome painting between a New World primate,the woolly monkey, and humans.Chromosome Res 9:97 -106.

    Article  PubMed  CAS  Google Scholar 

  • Stanyon R, Bonvicino CR, Svartman M, Seuanez HN (2003) Chromosome painting in Callicebus lugens,the species with the lowest diploid number (2n=16)known in primates. Chromosoma,112:201 -206.

    Article  PubMed  CAS  Google Scholar 

  • Steiper ME, Ruvolo M (2002) New World monkey phylogeny based on X-linked G6PD DNA sequences.Mol Phylogenet Evol 27:121 -130.

    Article  CAS  Google Scholar 

  • Tanaka K, Matsuda Y, Masangkay JS, Solis CD, Anunciado RV, Namikawa T.(1999). Characterization and chromo-somal distribution of satellite DNA sequences of the water buffalo (Bubalus bubalis ).J Hered 90:418 -422.

    Article  PubMed  CAS  Google Scholar 

  • Thomsen PD, Hoyheim B, Christensen K (1996) Recent fusion events during evolution of pig chromosomes 3 and 6 identi ed by comparison with the babirusa karyotype. Cytogenet Cell Genet 73:203 -208.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerbault-Serreau, M., Bonnet-Garnier, A., Richard, F. et al. Chromosome painting comparison of Leontopithecus chrysomelas (Callitrichine, Platyrrhini) with man and its phylogenetic position. Chromosome Res 12, 691–701 (2004). https://doi.org/10.1023/B:CHRO.0000045754.43803.db

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CHRO.0000045754.43803.db

Navigation