Skip to main content
Log in

Oxidation of Dry Methane on the Surface of Oxygen Ion-Conducting Membranes

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The surface exchange limitations of oxygen permeation through dense mixed-conducting membranes enhance membrane stability, enabling the operation of mixed conductors, such as La0.3Sr0.7Co0.8Ga0.2O3-δ (LSCG) and La2Ni0.9Co0.1O4+δ (LNC), under air/dry CH4 gradient up to temperatures as high as 1173–1223 K. Testing of these materials in a model disk-shaped membrane reactor at 1023–1223 K showed high CO2 yields (>75%). In particular, at 1173 K, the CO selectivity was 17% for LNC and 2% for LSCG ceramics, with methane conversion efficiency of 20 and 37% respectively. Similar tendency was observed for a fuel cell-type reactor with yttria-stabilized zirconia solid electrolyte and cermet Ce0.8Gd0.2O2-δ/Pt anode, where decreasing the molar ratio between methane and electrochemically supplied oxygen from approximately 10 to 2 decreases CO/CO2 ratio at the outlet down to 0.3. This behavior suggests significant role of the complete methane oxidation on the interface between an oxygen ion-conducting membrane and gas phase, thus making it necessary to incorporate reforming catalysts in the reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Wilhelm, D. R. Simbeck, A. D. Karp and R. L. Dickenson, Fuel Process. Technol. 71 (2001) 139.

    Google Scholar 

  2. J. R. Rostrup-Nielsen, Catal. Today 71 (2002) 243.

    Google Scholar 

  3. P. N. Dyer, R. E. Richards, S. L. Russek and D. M. Taylor, Solid State Ionics 134 (2000) 21.

    Google Scholar 

  4. V. Antonucci, P. L. Antonucci, A. S. Arico and N. Giordano, J. Power Sources 63 (1996) 95.

    Google Scholar 

  5. V. A. Sobyanin, V. D. Belyaev and V. V. Gal'vita, Catal. Today 42 (1998) 337.

    Google Scholar 

  6. S. Pei, M. S. Kleefisch, T. P. Kobylinski, J. Faber, C. A. Udovich, V. Zhang-McCoy, B. Dabrowski, U. Balachandran, R. V. Mieville and R. B. Poeppel, Catal. Lett. 30 (1995) 201.

    Google Scholar 

  7. J. E. ten Elshof, B. A. van Hassel and H. J. M. Bouwmeester, Catal. Today 25 (1995) 397.

    Google Scholar 

  8. C. Y. Tsai, A. G. Dixon, Y. H. Ma, W. R. Moser and M. R. Pascucci, J. Am. Ceram. Soc. 81 (1998) 1437.

    Google Scholar 

  9. W. Jin, S. Li, P. Huang, N. Xu, J. Shi and Y. S. Lin, J. Membr. Sci. 166 (2000) 13.

    Google Scholar 

  10. S. J. Xu and W. J. Thomson, AIChE J. 43 (1997) 2731.

    Google Scholar 

  11. Y. Zeng, Y. S. Lin and S. L. Swartz, J. Membr. Sci. 150 (1998) 87.

    Google Scholar 

  12. O. Yamamoto, Electrochim. Acta 45 (2000) 2423.

    Google Scholar 

  13. R. M. Ormerod, Chem. Soc. Rev. 32 (2003) 17.

    Google Scholar 

  14. R. J. Gorte, H. Kim and J. M. Vohs, J. Power Sources 106 (2002) 10.

    Google Scholar 

  15. T. Tsai and S. A. Barnett, Solid State Ionics 98 (1997) 191.

    Google Scholar 

  16. V. V. Kharton, E. N. Naumovich, V. N. Tikhonovich, I. A. Bashmakov, L. S. Boginsky and A. V. Kovalevsky, J. Power Sources 79 (1999) 242.

    Google Scholar 

  17. X. G. Wang, N. Nakagawa and K. Kato, Electrochemistry 70 (2002) 252.

    Google Scholar 

  18. E. Ramirez-Cabrera, A. Atkinson and D. Chadwick, Solid State Ionics 136–137 (2000) 825.

    Google Scholar 

  19. T. Nakamura, G. Petzov and L. J. Gaukler, Mater. Res. Bull. 15 (1979) 649.

    Google Scholar 

  20. V. V. Kharton, A. V. Kovalevsky, A. A. Yaremchenko, F. M. Figueiredo, E. N. Naumovich, A. L. Shaulo and F. M. B. Marques, J. Membr. Sci. 195 (2002) 277.

    Google Scholar 

  21. A. A. Yaremchenko, V. V. Kharton, M. V. Patrakeev and J. R. Frade, J. Mater. Chem. 13 (2003) 1136.

    Google Scholar 

  22. V. V. Kharton, A. A. Yaremchenko, M. V. Patrakeev, E. N. Naumovich and F. M. B. Marques, J. Eur. Ceram. Soc. 23 (2003) 1417.

    Google Scholar 

  23. L. A. Chick, L. R. Pederson, G. D. Maupin, J. L. Bates, L. E. Thomas and G. L. Exarhos, Mater. Lett. 10 (1990) 6.

    Google Scholar 

  24. V. V. Kharton, V. N. Tikhonovich, L. Shuangbao, E. N. Naumovich, A. V. Kovalevsky, A. P. Viskup, I. A. Bashmakov and A. A. Yaremchenko, J. Electrochem. Soc. 145 (1998) 1363.

    Google Scholar 

  25. H. J. M. Bouwmeester, H. Kruidhof and A. J. Burggraaf, Solid State Ionics 72 (1994) 185.

    Google Scholar 

  26. A. G. Steghuis, J. G. van Ommen, K. Seshan and J. A. Lercher, Stud. Surf. Sci. Catal. 107 (1997) 403.

    Google Scholar 

  27. K. Otsuka, Y. Wang, E. Sunada and I. Yamanaka, J. Catal. 175 (1998) 152.

    Google Scholar 

  28. P. Pantu and G. R. Gavalas, Appl. Catal. A223 (2002) 253.

    Google Scholar 

  29. L. Pino, A. Vita, M. Cordaro, V. Recupero and M. S. Hegde, Appl. Catal. A243 (2003) 135.

    Google Scholar 

  30. D. E. Rice and D. J. Buttrey, J Solid State Chem. 105 (1993) 197.

    Google Scholar 

  31. H. S. O'Neill and M. I. Pownceby, Contrib. Mineral. Petrol. 114 (1993) 296.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V.V. Kharton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaremchenko, A., Valente, A., Kharton, V. et al. Oxidation of Dry Methane on the Surface of Oxygen Ion-Conducting Membranes. Catalysis Letters 91, 169–174 (2003). https://doi.org/10.1023/B:CATL.0000007150.63791.a2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CATL.0000007150.63791.a2

Navigation