Skip to main content
Log in

Transformation of alternan-producing strains of Leuconostoc by electroporation

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Alternan-producing Leuconostoc mesenteroides strain NRRL B-1355 and its glucansucrase-negative derivative NRRL B-21414 were transformed by electroporation using four Gram positive-Gram negative shuttle vectors. Optimal conditions were 400 Ω and 10 kV cm−1, resulting in transformation efficiencies of up to 3.5×104 per μg DNA. Relatively low copy numbers and native plasmids made it difficult to visualize the introduced plasmids on ethidium bromide-stained gels and, in some cases, on blot hybridizations. However, PCR analysis indicated that 95% of putative transformants carried plasmid sequences. Direct colony PCR was shown to work well for this system and also for transformants of L. mesenteroides subsp. cremoris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arguello-Morales MA, Remaud-Simeon M, Pizzut S, Sarcabal P, Willemot R-M, Monsan P (2000) Sequence analysis of the gene encoding alternansucrase, a sucrose glucosyltransferase from Leuconostoc mesenteroidesNRRL B-1355. FEMS Microbiol. Lett. 182: 81–85.

    Google Scholar 

  • Behnke D, Malke H, Hartmann M, Walter F (1979) Posttransformational rearrangement of an in vitroreconstituted group A streptococcal erythromycin resistance plasmid. Plasmid 2: 605–616.

    Google Scholar 

  • Clewell DB, Yagi Y, Dunny GM, Schultz SK (1974) Characterization of three plasmid deoxyribonucleic acid molecules in a strain of Streptococcus faecalis: identification of a plasmid determining erythromycin resistance. J. Bacteriol. 117: 283–289.

    Google Scholar 

  • Cote GL (1992) Low-viscosity a-D-glucan fractions derived from sucrose which are resistant to enzymatic digestion. Carbohyd. Polym. 19: 249–252.

    Google Scholar 

  • Cote GL (2002) Alternan. In: Vandamme EJ, De Baets S, Steinbuchel A, eds. Biopolymers, Vol. 5. Weinheim: Wiley-VCH, pp. 323–350.

    Google Scholar 

  • Cote GL, Robyt JF (1982) Isolation and partial characterization of an extracellular glucansucrase from L. mesenteroidesNRRL B-1355 that synthesizes an alternating (1?6), (1?3)-a-D-glucan. Carbohyd. Res. 101: 57–74.

    Google Scholar 

  • Cote GL, Holt SM, Miller-Fosmore C (2003) Prebiotic oligosaccharides via alternansucrase acceptor reactions. In: Eggleston G, Cote GL, eds. Oligosaccharides in Food and Agriculture.ACS Symposium Series 849. Oxford: Oxford University Press, pp. 75–89.

    Google Scholar 

  • Cote GL, Leathers TD, Ahlgren JA, Wyckoff HA, Hayman GT, Biely P (1997) Alternan and highly branched limit dextrans: low-viscosity polysaccharides as potential new food ingredients. In: Spanier AM, Tamura M, Okai H, Mills O, eds. Chemistry of Novel Foods. Carol Stream: Allured Publishing Corp., pp. 95–110.

    Google Scholar 

  • Dao ML, Ferretti JJ (1985) Streptococcus-Escherichia colishuttle vector pSA3 and its use in the cloning of streptococcal genes. Appl. Environ. Microbiol. 49: 115–119.

    Google Scholar 

  • David S, Simons G, de Vos WM (1989) Plasmid transformation by electroporation of Leuconostoc paramesenteroidesand its use in molecular cloning. Appl. Environ. Microbiol. 55: 1483–1489.

    Google Scholar 

  • Dicks LMT (1994) Transformation of Leuconostoc oenosby electroporation. Biotechnol. Tech. 8: 901–904.

    Google Scholar 

  • Hohn TM, Dejardins AE (1992) Isolation and gene disruption of the Tox5gene encoding trichodiene synthase in Gibberella pulicaris. Mol. Plant-Microbe Interact. 5: 249–256.

    Google Scholar 

  • Jeanes A, Haynes WC, Wilham CA, Rankin JC, Melvin EH, Austin MJ, Cluskey JE, Fisher BE, Tsuchiya JH, Rist CE (1954) Characterization and classification of dextrans from ninety-six strains of bacteria. J. Am. Chem. Soc. 76: 5041–5052.

    Google Scholar 

  • Kok J, van der Vossen JMBM, Venema G (1984) Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilisand Escherichia coli. Appl. Environ. Microbiol. 48: 726–73.

    Google Scholar 

  • Kossman J, Welsh T, Quanz M, Knuth K (2000) Nucleic acid molecules encoding alternansucrase. PCT Patent WO00/47727.

  • Leathers TD (2002) Dextran. In: Vandamme EJ, De Baets S, Steinbuchel A, eds. Biopolymers, Vol. 5. Weinheim: Wiley-VCH, pp. 299–321.

    Google Scholar 

  • Leathers TD, Ahlgren JA, Cote GL (1997a) Alternansucrase mutants of Leuconostoc mesenteroidesstrain NRRL B-21138. J. Ind. Microbiol. Biotechnol. 18: 278–283.

    Google Scholar 

  • Leathers TD, Hayman GT, Cote GL (1997b) Microorganism strains that produce a high proportion of alternan to dextran. U.S. Patent 5,702,942.

  • Leathers TD, Hayman GT, Cote GL (1995) Rapid screening of Leuconostoc mesenteroidesmutants for elevated proportions of alternan to dextran. Curr. Microbiol. 31: 19–22. 1124

    Google Scholar 

  • Leathers TD, Hayman GT, Cote GL (1998) Rapid screening method to select microorganism strains that produce a high proportion of alternan to dextran. U.S. Patent 5,789,209.

  • Leathers TD, Nunnally MS, Ahlgren JA, Cote GL (2003) Characterization of a novel modified alternan. Carbohyd. Polym. 54: 107–113.

    Google Scholar 

  • Leathers TD, Nunnally MS, Cote GL (2002a) Modification of alternan by novel Penicilliumspp. J. Ind. Microbiol. Biotechnol. 29: 177–180.

    Google Scholar 

  • Leathers TD, Nunnally MS, Cote GL (2002b) Penicilliumisolates for modifying alternan. U.S. Patent 6,479,275.

  • Misaki A, Torii M, Sawai T, Goldstein IJ (1980) Structure of the dextran of Leuconostoc mesenteroidesB-1355. Carbohyd. Res. 84: 273–285.

    Google Scholar 

  • Seymour FR, Knapp RD (1980) Unusual dextrans: 13. Structural analysis of dextrans from strains of Leuconostocand related genera, that contain 3-O-a-D-glucosylated a-D-glucopyranosyl residues at the branch points, or in consecutive linear position. Carbohyd. Res. 81: 105–129.

    Google Scholar 

  • Smith MR, Zahnley J, Goodman N (1994) Glucosyltransferase mutants of Leuconostoc mesenteroidesNRRL B-1355. Appl. Environ. Microbiol. 60: 2723–2731.

    Google Scholar 

  • Wyckoff HA, Sandine WE, Kondo JK (1991) Transformation of dairy Leuconostocusing plasmid vectors from Bacillus, Escherichia, and Lactococcushosts. J. Dairy Sci. 74: 1454–1460.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leathers, T.D., Jones, J.D. & Wyckoff, H.A. Transformation of alternan-producing strains of Leuconostoc by electroporation. Biotechnology Letters 26, 1119–1124 (2004). https://doi.org/10.1023/B:BILE.0000035482.41491.7e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BILE.0000035482.41491.7e

Navigation