Skip to main content
Log in

Polymorphisms in Blood Proteins of Bos indicus and Bos taurus Cattle Breeds of Cameroon and Nigeria, and Description of New Albumin Variants

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Polymorphisms in the five blood protein loci albumin (ALB), carbonic anhydrase (CA II), vitamin D binding protein (GC), haemoglobin (HBB), and transferrin (TF) were investigated in 520 individuals from 12 cattle populations (Bos indicus and Bos taurus) in Cameroon and Nigeria by isoelectric focusing with carrier ampholytes in ultrathin polyacrylamide gels (PAG-IEF) and by linear gradient polyacrylamide gel electrophoresis (PAGE). While all loci in nine populations were polymorphic with up to six alleles at the ALB and TF loci: the Namchi population showed monomorphism at the CA II locus and Muturu at the ALB, CA II, and HBB loci. There was a clear distinction between Bos indicus and Bos taurus breeds at the ALB locus with ALB B predominating in indicine and ALB A predominating in taurine breeds. CA II S, GC A, and HBB A were the most commonly occurring alleles in all populations. Two variants not described before were demonstrated by PAG-IEF at the ALB locus and named ALB J and ALB K. Mean effective number of alleles as measure of intrabreed diversity was higher in zebu populations (2.040–2.288) as compared to taurine breeds (1.349–1.836). Significant deviations from Hardy–Weinberg equilibrium occurred in some populations at the HBB and TF loci. More haplotypes of ALB/GC occurred in the zebu than taurine breeds. ALB A GC A predominated in the taurine populations and ALB B GC A in the indicine populations. Influence of zebu genes on the Namchi and N'Dama taurine breeds was detected at the ALB, CA II, HBB, and TF loci, and estimated at 61.5% and 5.7%, respectively. The high resolution of PAG-IEF in screening for polymorphisms within diversity studies was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Achukwi, M. D., Tanya, V. N., Hill, E.W., Bradley, D. G., Meghen, C., Sauveroche, B., Banser, J. T., and Ndoki, J. N. (1997). Susceptibility of the Namchi and Kapsiki cattle of Cameroon to trypanosome infection. Trop. Anim. Health Prod. 4:219–226.

    Google Scholar 

  • Andersson-Eklund, L., Danell, B., and Rendel, J. (1990). Associations between blood protein groups, blood polymorphisms and breeding values for production traits in Swedish Red and White Dairy bulls. Anim. Genet. 21:361–376.

    Google Scholar 

  • Arthur, H., and Bell, T. K. (2002). Identification of two new variants of vitamin D binding protein (GC) in cattle. Proceedings of the XXVIII International Conference Animal on Genetics, August 11-15, 2002, Göttingen, Germany , p. 83.

  • Ashton, G. C., and Lampkin, G. H. (1964). Transferrin and post-albumin polymorphism in East African cattle. Genet. Res. Camb. 6:209–215.

    Google Scholar 

  • Ashton, G. C., and Lampkin, G. H. (1965). Serum albumin and transferrin polymorphism in East African cattle. Nature 205:209–210.

    Google Scholar 

  • Bachmann, A. W., Campbell, R. S. F., and Yellowlees, D. (1978). Haemoglobin types of Bos taurus, Bos indicus, Bos bantengand Bubalis bubalisin Northern Australia. AJEBAK 56:623–629.

    Google Scholar 

  • Baker, E. N., and Lindley, P. F. (1992). New perspectives on the structure and function of transferrins. J. Inorg. Biochem. 47:147–160.

    Google Scholar 

  • Baker, C. M. A., and Manwell, C. (1980). Chemical classification of cattle 1. Breed groups. Anim. Blood Groups Biochem. Genet. 11:127–150.

    Google Scholar 

  • Baker, C. M. A., and Manwell, C. (1991). Population genetics, molecular markers and gene conservation of bovine breeds. In Hickman, C. G. (ed.), Cattle Genetic Resources, Elsevier, Amsterdam, pp. 221–304.

    Google Scholar 

  • Bangham, A. D., and Blumberg, B. S. (1958). Distribution of electrophoretically different haemoglobin among some cattle breeds of Europe and Africa. Nature 181:1551–1552.

    Google Scholar 

  • Barbieri,V., Crimella, C., Rognoni, C., and Cerutti, F. (1969). Preliminary observations on some protein and enzyme polymorphisms in Chiana cattle. Alti. Soc. Ital. Sci. Vet. 23:602–605.

    Google Scholar 

  • Blott, S. C., Williams, J. L., and Haley, C. S. (1998). Genetic relationships among European cattle breeds. Anim. Genet. 29:273–282.

    Google Scholar 

  • Bouquet, Y., Van DeWege, A., Van Zeveren, A., and Varewyck, H. (1986). Evolutionary conservation of the linkage between the structural loci for serum albumin and vitamin D binding protein (GC) in cattle. Anim. Genet. 17:175–182.

    Google Scholar 

  • Braend, M. (1972). Studies on the relationships between cattle breeds in Africa, Asia and Europe: Evidence obtained by studies of blood groups and protein polymorphism. World Rev. Anim. Prod. 8:9–14.

    Google Scholar 

  • Braend, M., Efremov, G., and Raastad, A. (1965). Genetics of bovine haemoglobin D. Hereditas 54:255–259.

    Google Scholar 

  • Braend, M., and Khanna, N. D. (1968). Haemoglobin and transferrin types of someWest African cattle. Anim. Prod. 10:129–134.

    Google Scholar 

  • Carr,W. R. (1964). The haemoglobins of indigenous breeds of cattle in Central Africa. Rhod. J. Agric. Res. 2:93-94.

    Google Scholar 

  • Carr,W. R. (1967). Serum albumin polymorphism of some breeds of cattle in Zambia. Proceedings of the 10th European Conference on Animal Blood Groups Biochemistry Polymer, Paris, pp. 293-297.

  • Carr, W. R., Condy, J. B., and Burrows, P. M. (1966). Transferrin polymorphism of indigenous cattle in Rhodesia and Zambia. Anim. Prod. 8:59–64.

    Google Scholar 

  • Chakraborty, R., Kambo, M. I., Nwankwo, M., and Ferrell, R. E. (1992). Caucasian genes in American Blacks: New data. Am. J. Hum. Genet. 50:145–155.

    Google Scholar 

  • Chandler, R. L. (1952). Comparative tolerance of West African N'Dama cattle to trypanosomiasis.Ann. Trop. Med. Parasital. (London) 46:127–132.

    Google Scholar 

  • Charon, K. M., Lipecka, C., Siudek, T., and Swiderek W. (1996). Relationship between transferrin and globin antigen polymorphism and sheep resistance to mastitis. J. Appl. Genet. 37:161–172.

    Google Scholar 

  • Chegwidden, W. R., Carter, N. D., and Edwards, Y. H. (2000). The Carbonic Anhydrases, Birkhäuser, Boston.

    Google Scholar 

  • Dally, M. R., Hohenboken, W., Thomas, D. L., and Craig, A. M. (1980). Relationships between haemoglobin type and reproduction, lamb, wool and milk production and health-related traits in crossbred ewes. J. Anim. Sci. 50:418–427.

    Google Scholar 

  • Efremov, G. D., Ilkovski, R., Cizbanovski, T., Lozance, I., and Popovski K. (1979). Polymorphism of proteins and enzymes in cattle breeds imported into Macedonia. I. Distribution of Hb, Tf, Alb, carbonic anhydrase and amylase type. 2. The relationship with performance and productive characters. StČcarstvo 33:73–80.

    Google Scholar 

  • Ekins, A., and Niveu, N. F. (2001). Production of transferrin receptors by Histophilus ovis: Three of five strains require two signals. Can. J. Microbiol. 48:417–423.

    Google Scholar 

  • Erhardt, G. (1986). Transferrin variants in sheep: Separation and characterization by polyacrylamide gel electrophoresis and isoelectric focusing. Anim. Genet. 17:343–352.

    Google Scholar 

  • Erhardt, G. (1991). Anwendungsmöglichkeiten hochauflösender elektrophoretischer Trennverfahren bei tierzüchterischen Fragestellungen. Fleck, Wissenschaftlicher Fachverlag, Niederkleen.

    Google Scholar 

  • Erhardt, G. (1993). Allele frequencies of milk proteins in German cattle breeds and demonstration of (r)s2-casein variants by isoelectric focusing. Arch. Tierz. Dummerstorf 36:145–152.

    Google Scholar 

  • FAO (2000). World Watch List for Domestic Animal Diversity, 3rd edn, Food and Agricultural Organization, Rome.

    Google Scholar 

  • FDLPCS (1992). Nigerian Livestock Resources. Volume II. National Synthesis, Federal Department of Livestock and Pest Control Services, Abuja, Nigeria.

    Google Scholar 

  • Frisch, J. E., Drinkwater, R., Harrison, B., and Johnson, S. (1997). Classification of the southern African sanga and East African shorthorned zebu. Anim. Genet. 28:77–83.

    Google Scholar 

  • Gonzalez, P., Tunon, M. J., and Vallejo, M. (1987). Genetic relationships between seven Spanish native breeds of cattle. Anim. Genet. 18:249–256.

    Google Scholar 

  • Graml, R., Ohmayer, G., Pirchner, F., Erhard, L., Buchberger, J., and Mostageer,A. (1986). Biochemical polymorphism in Egyptian Baladi cattle and their relationship with other breeds. Anim. Genet. 17:61–76.

    Google Scholar 

  • Granado A., and Berovides V. (1979). Serum albumin variants and reproductive characters in Zebu and F1 crosses (HL × Zebu). Revista de Salud Animal 1:105–112.

    Google Scholar 

  • Guo S.W., and Thompson E. A. (1992). Performing the exact test of Hardy-Weinberg proportions for multiple alleles. Biometrics 48:361–372.

    Google Scholar 

  • Hall, S. J. G. (1992). Conservation of livestock breeds. In Rege, J. E. O., and Lipner, M. E. (eds.), African Animal Genetic Resources: Their Characterization, Conservation and Utilization. Proceedings of the Research Planning Workshop held at ILCA, Addis Ababa, Ethiopia, pp. 11–12.

  • Han, S. K., and Suzuki, S. (1976). Studies on haemoglobin variants in Korean cattle. Anim. Blood Groups Biochem. Genet. 7:21–25.

    Google Scholar 

  • Hanotte, O., Bradley, D. G., Ochieng, J. W., Verjee, Yasmin, Hill, E. W., and Rege, J. E. O. (2002). African pastoralism: Genetic imprints of origins and migrations. Science 296:336–339.

    Google Scholar 

  • Hiendleder, S., Thomsen, H., Leyhe-Horn, B., Reinsch, N., Looft, C., Xu, N., Medjugorac, I., Russ, I., Grupe, S., Kühn, C., Brockmann, G. A., Blümel, J., Brenig, B., Reinhardt, F., Reents, R., Averdunk, G., Schwerin, M., Förster, M., Kalm, E., and Erhardt, E. (2003). Mapping of QTL for body conformation and behaviour in cattle. J. Hered. 94:496–506.

    Google Scholar 

  • Hines, H. C. (1999). Blood groups and biochemical polymorphisms. In Fries, R., and Ruvinsky, A. (eds.), The Genetics of Cattle, CABI Publishing, New York.

    Google Scholar 

  • Juneja R. K., and Choudhury R. P. (1971). Albumin polymorphism of some Indian cattle and water buffaloes. J. Anim. Morphol. Physiol. 18:176–181.

    Google Scholar 

  • Kantanen, J., Olsaker, I., Holm, L. E., Lien, S., Vilkki, J., Brusgaard, K., Eythorsdottir, E., Danell, B., and Adalsteinsson, S. (2000). Genetic diversity and population structure of 20 North European cattle breeds. J. Hered. 91:446–457.

    Google Scholar 

  • Kappes, S. M., Bishop, M. D., Keele, J.W., Penedo, M. C., Hines, H. C., Grosz, M. D., Hawkins, G. A., Stone, R. T., Sunder, S. L., and Beattie, C. W. (1994). Linkage of bovine erythrocyte antigen loci B, C, L, S, Z, R1 and T1 and the serum protein loci post-transferrin 2 (PTF 2), vitamin D-binding protein (GC) and albumin (ALB) to DNA microsatellite markers. Anim. Genet. 25:133–140.

    Google Scholar 

  • Komatsu, M., Abe,T., and Oishi,T. (1979). Genetic variation of serum post-albumin and post-transferrin in nine Asian and European cattle breeds. Anim. Blood Groups Biochem. Genet. 10:185–188.

    Google Scholar 

  • Kushner, H. F., Zubareva, L. A., Solomonova, O. N., and Kuznetsov, N. I. (1973). The relationship between the types of transferrin, amylase and haemoglobin and cow fertility in two cattle breeds. Anim. Blood Groups Biochem. Genet. 4:119–122.

    Google Scholar 

  • MacHugh, D. E., Shriver, M. D., Loftus, R. T., Cunningham, P. M., and Bradley, D. G. (1997). Microsatellite DNA variation and the evolution, domestication and phylogeography of taurine and zebu cattle (Bos taurusand Bos indicus). Genetics 146:1071–1086.

    Google Scholar 

  • Mandal, B. K., and Dattagupta, R. (1985). Serum albumin polymorphism and its relationship to economic traits in crossbred cattle. Anim. Blood Groups Biochem. Genet. 16:229–233.

    Google Scholar 

  • Manwell, C., and Baker, C. M. A. (1980). Chemical classification of cattle 1. Phylogenetic tree and specific status of the zebu. Anim. Blood Groups Biochem. Genet. 11:151–162.

    Google Scholar 

  • Masina, P., Ramunno, L., and Iannelli, D. (1980). A new electrophoretic variant of vitamin D-binding protein (post-albumin) in cattle serum. Anim. Blood Groups Biochem. Genet. 11:271–273.

    Google Scholar 

  • Messine, O., Tanya, V. N., Mbah, D. A., and Tawah, C. L. (1995). Ressources génétiques animales du Cameroon passé, présent et avenir: Ie cas des ruminants. Anim. Genet. Resour. Inf. 16:51–69.

    Google Scholar 

  • Murray, M., Clifford, D. J., Gettingby, G., Snow, W. F., and McIntyre, W. J. M. (1981). A study of the susceptibility of African trypanosomiasis of N'Dama and zebu cattle in an area of Glossina morsitans submorsitans challenge. Vet. Rec. 109:53–59.

    Google Scholar 

  • Naik, S. N., Sukumaran, P. K., and Sanghvi, L. D. (1965). A note on blood groups and haemoglobin variants in zebu cattle. Anim. Prod. 7:275–277.

    Google Scholar 

  • Naik, S. N., Sukumaran, P. K., and Sanghvi, L. D. (1969). Haemoglobin polymorphism in Indian Zebu cattle. Heredity 24:239–247.

    Google Scholar 

  • Osterhoff, D. R. (1975). Haemoglobin types in African cattle. J. S. Afr. Vet. Assoc. 46:186–189.</del></del>

    Google Scholar 

  • Özbeyaz, Ceyhan (1991). Haemoglobin polymorphism in Turkish native cattle breeds. A. Ü. Vet. Fak. Derg. 38:53–59.

    Google Scholar 

  • Penedo, M. C. T., Mortari, N., and Magalhaes, L. E. (1982). Carbonic anhydrase polymorphism in Indian Zebu cattle. Anim. Blood Groups Biochem. Genet. 13:141–143.

    Google Scholar 

  • Petit, J. P. (1968). Détermination de la nature des hémoglobines chez 982 bovins africains et malgaches (taurines et zébus) par électrophorése sur acétate de cellulose. Rev. Elev. Méd. Vét. Pays Trop. 21:405–413.

    Google Scholar 

  • Pieragostini, E., Dario, C., and Bufano, G. (1994). Haemoglobin phenotypes and haematological factors in Leccese sheep. Small Rumin. Res. 13:177–185.

    Google Scholar 

  • Prasad, S. K., Pandey, R. S., Shanker, Vijay, Nair, K.G. S., and Nair, P.G. (1978). Genetic polymorphism of serum transferrin in zebu and cross-bred cattle. Indian J. Exp. Biol. 16:109–110.

    Google Scholar 

  • Queval, R. (1982). Polymorphisme de la transferrine chez les bovins trypanosensibles et trypanotol érants de 16frique de 1Όuest. Répartition et fréquence de leurs allelés. Rev. Elev. Méd. Vét. Pays Trop. 35:375–380.

    Google Scholar 

  • Queval, R., and Bambara, L. (1984). Le polymorphisme de lálbumine dans la race Baoulé et une population de zébus de type soudanien. Rev. Elev. Méd. Vét. Pays Trop. 37:288–296.

    Google Scholar 

  • Raymond, M., and Rousset, F. (2001). Population genetics software and ecumenicism. J. Hered. 86,248–249, available at http:/wbiomed.curtin.edu.au/ genepop/</del></del></del>

    Google Scholar 

  • Roberts, C. J., and Gray, A. R. (1973). Studies on trypanosome-resistant cattle. The breeding and growth performance of N'Dama, Muturu and zebu cattle maintained under the same conditions of husbandry. Trop. Anim. Health Prod. 5:220–233.

    Google Scholar 

  • Ron, M., Kliger, D., Feldmesser, E., Seroussi, E., Ezra, E., and Weller, J. I. (2001). Multiple quantitative trait locus analysis of bovine chromosome 6 in the Israeli Holstein population by a daughter design. Genetics 159:727–735.

    Google Scholar 

  • Soos, P. (1972). Carbonic anhydrase polymorphism in some Hungarian cattle breeds. Proceedings of the 12th European Conference on Animal Blood Groups Biochemistry Polymer (Budapest, 1970), pp. 191–195.

  • Spooner, R. L., and Oliver, R. A. (1969). Albumin polymorphism in British cattle. Anim. Prod. 11:59–63.

    Google Scholar 

  • Stormont, C., Morris, B. G., and Suzuki, Y. (1972). A new phenotype in the carbonic anhydrase system of cattle. Proceedings of the 12th European Conference on Animal Blood Groups Biochemistry Polymer (Budapest, 1970), pp. 187–189.

  • VanDeWeghe, A., Van Zeveren, A., and Bouquet,Y. (1982). The vitamin D-binding protein in domestic animals. Comp. Biochem. Physiol. B. 73:977–982.

    Google Scholar 

  • Velmala, R. J., Vikki, H. J., Elo, K. T., De Koning, D. J., and Mäki-Tanila, A. V. (1999). A search for quantitative trait loci for milk production traits on chromosome 6 in Finnish Ayrshire cattle. Anim. Genet. 30:136–143.

    Google Scholar 

  • Vicovan, G., and Rascu, D. (1989). Types of haemoglobin in sheep related to environmental adaptation. Archiva Zootechnica 1:33–44.

    Google Scholar 

  • White, P., and Cooke, N. (2000). The multifunctional properties and characteristics of vitamin Dbinding protein. Trends Endocrino. Metab. 11:320–327.

    Google Scholar 

  • Xie, X., and Ott, J. (1993). Testing linkage disequilibrium between a disease gene and marker loci. Am. J. Hum. Genet. 53:1107.

    Google Scholar 

  • Yeh, F. C., Yang, R-C., and Boyle, T. (1999). POPGENE Version 1.31. Microsoft Windows-Based Freeware for Population Genetics analysis. Available at ftp://ftp.microsoft.com/ Softlib/MSLFILES/HPGL.EXE

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Erhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibeagha-Awemu, E.M., Jäger, S. & Erhardt, G. Polymorphisms in Blood Proteins of Bos indicus and Bos taurus Cattle Breeds of Cameroon and Nigeria, and Description of New Albumin Variants. Biochem Genet 42, 181–197 (2004). https://doi.org/10.1023/B:BIGI.0000026633.10296.e5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIGI.0000026633.10296.e5

Navigation