Skip to main content
Log in

An Analysis of Marsupial Interordinal Relationships Based on 12S rRNA, tRNA Valine, 16S rRNA, and Cytochrome b Sequences

  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The basal split among living marsupials is traditionally placed between the cohorts Ameridelphiaand Australidelphia. Ameridelphia includes all American forms excepting the South AmericanDramicuipx gliroidex (Order Microbiotheria). Australidelphia includes all Australasian taxaplus Dromiciops glinmles. DNA data support Eometatheria Dromiciaps + Diprotodontia +Dasyuromorphia + Notoryctemorphia) but do not resolve the position of bandicoots, whetherwith other australidelphians or with ameridelphians. Also, the most robust molecular trees (DNAhybridization, multigene studies) exhibit minimal branch subdivision and raise the possibility ofartit'actual associations owing to long branch attraction. We analyzed data sets that consistedof complete sequences tor four niitochondrial genes (cytochrome b, 12S rRNA, tRNA valine,16S rRNA). One data set included 14 marsupial taxa. A second data set included 14 marsupialsas well as outgroup sequences (one monolreme; 20 placentals). Phylogenetic analyses includedparsimony, minimum evolution, maximum likelihood, and quartet puzzling. When phylogeneticanalyses were restricted to just the marsupial sequences, there was 75 to 96% boostrap supportfor the separation of Ameridelphia versus Australidelphia. This suggests that either one orboth of these groups are monophyletic. Also, there was 71 to 98% bootstrap support for theseparation of Eometatheria versus Ameridelphia + Peramelina. Nonmonophyly of several a prioriclades was accepted by at least some statistical tests including the following: Diprotodontia+ Peramelina, Notoryctemorphia + Peramelina, Diprotodonlia + Notoryctemorphia, and themonophyly of Australasian marsupials. With the inclusion of outgroup sequences, there wasreduced bootstrap support for associations among marsupial orders and statistical tests failed toreject all interordinal associations that were tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

LITERATURE CITED

  • Abbie, A. A. (1937). Some observations on the major subdivisions of the Marsupialia. J. Anat. 71: 429–436.

    Google Scholar 

  • Aplin, K., and Archer, M. (1987). Recent advances in marsupial systematics with a new syncretic classification. In: Possums and Opossums: Studies in Evolution, M. Archer, ed., pp. xv-lxxii, Surrey Beatty and Sons, Chipping Norton, New South Wales.

    Google Scholar 

  • Archer, M. (1976). The basicranial region of marsupicarnivores (Marsupialia), interrelationships of carnivorous marsupials, and affinities of the insectivorous marsupial peramelids. Zool. J. Linn. Soc. 59: 217–322.

    Google Scholar 

  • Archer, M. (1984). The Australian marsupial radiation. In: Vertebrate Zoogeography and Evolution in Australasia, M. Archer and G. Clayton, eds., pp. 633–808, Hesperian Press, Perth.

    Google Scholar 

  • Bensley, B. A. (1903). On the evolution of the Australian Marsupialia: With remarks on the relationships of the marsupials in general. Trans. Linn. Soc. Lond. 9: 83–217.

    Google Scholar 

  • Bremer, K. (1988). The limits of amino-acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795–803.

    Google Scholar 

  • Cao, Y., Janke, A., Waddell, P. J., Westerman, M., Takenaka, O., Murata, S., Okada, N., Paabo, S., and Hasegawa, M. (1998). Conflict among individual mitochondrial proteins in resolving the phylogeny of eutherian orders. J. Mol. Evol. 47: 307–322.

    Google Scholar 

  • De Rijk, P., Van de Peer, Y., Chapella, S., and Wachter, R. D. (1994). Database on the structure of the large ribosomal subunit RNA. Nucleic Acids Res. 22: 3495–3501.

    Google Scholar 

  • Goodrich, E. S. (1935). Syndactyly in marsupials. Proc. Zool. Soc. Lond. 1935: 175–178.

    Google Scholar 

  • Hall, L. S. (1987). Syndactyly in marsupials-problems and prophecies. In: Possums and Opossums: Studies in Evolution, M. Archer, ed., pp. 245–255, Surrey Beatty and Sons, Chipping Norton, New South Wales.

    Google Scholar 

  • Hasegawa, M., Kishino, H., and Yano, T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 21: 160–174.

    Google Scholar 

  • Hershkovitz, P. (1992). Ankle bones: The Chilean opossum Dromiciops gliroides Thomas, and marsupial phylogeny. Bonn. Zool. Beitr. 43: 181–213.

    Google Scholar 

  • Kirsch, J. A. W. (1977). The comparative serology of Marsupialia, and a classification of marsupials. Aust. J. Zool. Suppl. Ser. 52: 1–152.

    Google Scholar 

  • Kirsch, J. A. W., and Palma, R. E. (1995). DNA/DNA hybridization studies of carnivorous marsupials. V. A further estimate of relationships among opossums (Marsupialia: Didelphidae). Mammalia 59: 403–425.

    Google Scholar 

  • Kirsch, J. A. W., Dickerman, A. W., Reig, O. A., and Springer, M. S. (1991). DNA hybridization evidence for the Australasian affinity of the American marsupial Dromiciops australis. Proc. Natl. Acad. Sci. USA 88: 10465–10469.

    Google Scholar 

  • Kirsch, J. A. W., Lapointe, F.-J., and Springer, M. S. (1997). DNA-hybridisation studies of marsupials and their implications for metatherian classification. Aust. J. Zool. 45: 211–280.

    Google Scholar 

  • Kishino, H., and Hasegawa, M. (1989). Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J. Mol. Evol. 29: 170–179.

    Google Scholar 

  • Krajewski, C., Blacket, M., Buckley, L., and Westerman, M. (1997a). A multigene assessment of phylogenetic relationships within the dasyurid marsupial subfamily Sminthopsinae. Mol. Phylogenet. Evol. 8: 236–248.

    Google Scholar 

  • Krajewski, C., Buckley, L., and Westerman, M. (1997b). DNA phylogeny of the marsupial wolf resolved. Proc. R. Soc. Lond. B 264: 911–917.

    Google Scholar 

  • Lapointe, F.-J., and Kirsch, J. A. W. (1995). Estimating phylogenies from lacunose distance matrices, with special reference to DNA hybridization data. Mol. Biol. Evol. 12: 266–284.

    Google Scholar 

  • Luckett, W. P. (1994). Suprafamilial relationships within Marsupialia: Resolution and discordance from multidisciplinary data. J. Mammal. Evol. 2: 255–283.

    Google Scholar 

  • Marshall, L. G. (1972). Evolution of the peramelid tarsus. Proc. Roy. Soc. Vict. 85: 51–60.

    Google Scholar 

  • Marshall, L. G., Case, J. A., and Woodburne, M. O. (1990). Phylogenetic relationships of the families of marsupials. In: Curren Mammalogy, Vol. 2, H. H. Genoways, ed., pp. 433–505, Plenum Press, New York.

    Google Scholar 

  • Prager, E. M., and Wilson, A. C. (1988). Ancient origin of lactalbumin from lysozyme: Analysis of DNA and amino acid sequences. J. Mol. Evol. 27: 326–335.

    Google Scholar 

  • Reig, O. A., Kirsch, J. A. W., and Marshall, L. G. (1987). Systematic relationships of the living and Neocenozoic American “opossum-like” marsupials (suborder Didelphimorphia), with comments on the classification of these and of the Cretaceous and Paleogene New World and European metatherians. In: Possums and Opossums: Studies in Evolution, M. Archer, ed., pp. 1–90, Surrey Beatty and Sons, Chipping Norton, New South Wales.

    Google Scholar 

  • Retief, J. D., Krajewski, C. Westerman, M., Winkfein, R. J., and Dixon, G. H. (1995). Molecular phylogeny and evolution of marsupial protamine P1 genes. Proc. Roy. Soc. Lond. B 259: 7–14.

    Google Scholar 

  • Ride, W. D. L. (1962). On the evolution of Australian marsupials. In: The Evolution of Living Organisms, G. W. Leeper, ed., pp. 281–306, Melbourne University Press, Melbourne.

    Google Scholar 

  • Simpson, G. G. (1945). The principles of classification and a classification of mammals. Bull. Am. Mus. Nat. Hist. 85: 1–350.

    Google Scholar 

  • Spotorno, A. E., Marin, J. C., Yevenes, M., Walker, L. I., Fernandez-Donoso, R., Pincheira, J., Berrios, M. S., and Palma, R. E. (1997). Chromosome divergences among American marsupials and the Australian affinities of the American Dromiciops. J. Mammal. Evol. 4: 259–269.

    Google Scholar 

  • Springer, M. S., and Douzery, E. (1996). Secondary structure and patterns of evolution among mammalian mitochondrial 12S rRNA molecules. J. Mol. Evol. 43: 357–373.

    Google Scholar 

  • Springer, M. S., and Kirsch, J. A. W. (1991). DNA hybridization, the compression effect, and the radiation of diprotodontian marsupials. Syst. Zool. 40: 131–151.

    Google Scholar 

  • Springer, M. S., and Woodburne, M. O. (1989). The distribution of some basicranial characters within the Marsupialia and a phylogeny of the Phalangeriformes. J. Vert. Paleont. 9: 210–221.

    Google Scholar 

  • Springer, M. S., Westerman, M., and Kirsch, J. A. W. (1994). Relationships among orders and families of marsupials based on 12S ribosomal DNA sequences and the timing of the marsupial radiation. J. Mammal. Evol. 2: 85–115.

    Google Scholar 

  • Springer, M. S., Hollar, L. J., and Burk, A. (1995). Compensatory substitutions and the evolution of the mitochondrial 12S rRNA gene in mammals. Mol. Biol. Evol. 12: 1138–1150.

    Google Scholar 

  • Springer, M. S., Burk, A., Kavanagh, J. R., Waddell, V. G., and Stanhope, M. J. (1997a). The interphotoreceptor retinoid binding protein gene in therian mammals: Implications for higher level relationships and evidence for loss of function in the marsupial mole. Proc. Natl. Acad. Sci. USA 94: 13754–13759.

    Google Scholar 

  • Springer, M. S., Cleven, G. C., Madsen, O., de Jong, W. W., Waddell, V. G., Amrine, H. M., and Stanhope, M. J. (1997b). Endemic African mammals shake the phylogenetic tree. Nature 388: 61–64.

    Google Scholar 

  • Springer, M. S., Kirsch, J. A. W., and Case, J. A. (1997c). The chronicle of marsupial evolution. In: Molecular Evolution and Adaptive Radiations, T. Givnish and K. Sytsma, eds., pp. 129–161, Cambridge University Press, Cambridge.

    Google Scholar 

  • Springer, M. S., Westerman, M., Kavanagh, J. R., Burk, A., Woodburne, M. O., Kao, D., and Krajewski, C. (1998). The origin of the Australasian marsupial fauna and the phylogenetic affinities of the enigmatic monito del monte and marsupial mole. Proc. R. Soc. Lond. B 265: 2381–2386.

    Google Scholar 

  • Swofford, D. L. (1998). PAUP*, Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4, Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Szalay, F. S. (1982). A new appraisal of marsupial phylogeny and classification. In: Carnivorous Marsupials, M. Archer, ed., pp. 621–640, Royal Zoological Society of New South Wales, Mosmon, New South Wales.

    Google Scholar 

  • Szalay, F. S. (1994). Evolutionary History of the Marsupials and an Analysis of Osteological Characters. Cambridge University Press, New York.

    Google Scholar 

  • Temple-Smith, P. (1987). Sperm ultrastructure and marsupial phylogeny. In: Possums and Opossums: Studies in Evolution, M. Archer, ed., pp. 171–193, Surrey Beatty & Spons, Chipping Norton, New South Wales.

    Google Scholar 

  • Templeton, A. R. (1983). Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution 37: 221–244.

    Google Scholar 

  • Thomas, O. (1888). Catalogue of the Marsupialia and Monotremata in the Collection of the British Museum (Natural History), British Museum, London.

    Google Scholar 

  • Thompson, J. D., Higgins, G. D., and Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.

    Google Scholar 

  • Westerman, M. (1991). Phylogenetic relations of the marsupial mole, Notoryctes typhlops (Marsupialia: Notoryctidae). Aust. J. Zool. 39: 529–537.

    Google Scholar 

  • Westerman, M., Springer, M. S., Dixon, J., and Krajewski, C. (1999). Molecular relationships of the extinct pig-footed bandicoot Chaeropus ecaudatus (Marsupialia: Perameloidea) using 12S rRNA sequences. J. Mammal. Evol. 6: 271–288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Springer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burk, A., Westerman, M., Kao, D.J. et al. An Analysis of Marsupial Interordinal Relationships Based on 12S rRNA, tRNA Valine, 16S rRNA, and Cytochrome b Sequences. Journal of Mammalian Evolution 6, 317–334 (1999). https://doi.org/10.1023/A:1027305910621

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027305910621

Navigation