Skip to main content
Log in

MV and Heyting Effect Algebras

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We review the fact that an MV-algebra is the same thing as a lattice-ordered effect algebra in which disjoint elements are orthogonal. An HMV-algebra is an MV-effect algebra that is also a Heyting algebra and in which the Heyting center and the effect-algebra center coincide. We show that every effect algebra with the generalized comparability property is an HMV-algebra. We prove that, for an MV-effect algebra E, the following conditions are mutually equivalent: (i) E is HMV, (ii) E has a center valued pseudocomplementation, (iii) E admits a central cover mapping γ such that, for all p, q∈E, p∧q=0⇒γ(p)∧q=0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M.K. Bennett and D.J. Foulis, “Phi-symmetric effect algebras,” Found.Phys. 25(12), 1699–1722 (1995).

    Google Scholar 

  2. M.K. Bennett and D.J. Foulis, “Interval and scale effect algebras,” Adv.Appl.Math. 19, 200–215 (1997).

    Google Scholar 

  3. G. Birkhoff, Lattice Theory, 3rd.ed. (American Mathematical Society colloquium Publications, XXV, Providence, RI, 1967).

    Google Scholar 

  4. P. Busch, P.J. Lahti, and P. Mittlestaedt, The Quantum Theory of Measurement (Springer, Berlin, 1991).

    Google Scholar 

  5. G. Cattaneo and G. Nistico, “Brouwer_Zadeh posets and three-valued 4ukasiewicz posets,” Internat.J.Fuzzy Sets and Systems 33, 165–190 (1989).

    Google Scholar 

  6. C.C. Chang, “Algebraic analysis of many-valued logics,” Trans.Am.Math.Soc. 88, 467–490 (1957).

    Google Scholar 

  7. C.C. Chang, “A new proof of the completeness of 4ukasiewicz axioms,” Trans.Am.Math.Soc. 93, 74–80 (1958).

    Google Scholar 

  8. F. Chovanec and F. Kôpka, “Boolean D-posets,” Tatra Mountains Mathematical Publications 10, 183–197 (1997).

    Google Scholar 

  9. M.L. Dalla Chiara, “Quantum logic,” in Handbook of Philosophical Logic III, D. Gabbay and G. Guenthner, eds.(Reidel, Dordrecht, 1986).

    Google Scholar 

  10. M.L. Dalla Chiara and R. Giuntini, “Paraconsistent quantum logics,” Found.Phys. 19(7), 891–904 (1989).

    Google Scholar 

  11. M.L. Dalla Chiara, G. Cattaneo, and R. Giuntini, “Fuzzy-intuitionisitic quantum logic,” Studia Logica 52, 1–24 (1993).

    Google Scholar 

  12. M.L. Dalla Chiara and R. Giuntini, “Partial and unsharp quantum logics,” Found.Phys. 24(8), 1161–1177 (1994).

    Google Scholar 

  13. M.L. Dalla Chiara and R. Giuntini, “Physical interpretations of the 4ukasiewicz quan-tum logical connectives,” in The Foundations of Quantum Mechanics, C. Garola and A. Rossi, eds.(Kluwer Academic, Dordrecht, 1995), pp.179–185.

    Google Scholar 

  14. M.L. Dalla Chiara and R. Giuntini, “Quantum logic, the logician's approach,” in Encyclopedia of Applied Physics, Vol.15, George L. Trigg, ed.(VCH Publishers, Weinheim, Germany, NY, 1996), pp.241–255.

    Google Scholar 

  15. M.R. Darnel, Theory of Lattice-Ordered Groups (Dekker, New York, 1995).

    Google Scholar 

  16. A. Dvurecenskij and S. Pulmannová, “D-test spaces and difference posets,” Rep.Math.Phys. 34(2), 151–170 (1994).

    Google Scholar 

  17. A. Dvurecenskij and H.S. Kim, “On connections between BCK-algebras and difference posets,” Studia Logica 60, 421–439 (1998).

    Google Scholar 

  18. A. Dvurecenskij and M.G. Graziano, “Remarks on representations of minimal clans,” Tatra Mountains Mathematical Publications 15, 31–53 (1998).

    Google Scholar 

  19. D.J. Foulis and M.K. Bennett, “Effect algebras and unsharp quantum logics,” Found.Phys. 24(10), 1325–1346 (1994).

    Google Scholar 

  20. D.J. Foulis, R.J. Greechie, and M.K. Bennett, “The transition to unigroups,” Internat.J.Theoret.Phys. 37(1), 45–63 (1998).

    Google Scholar 

  21. R. Giuntini and H. Greuling, “Toward a formal language for unsharp properties,” Found.Phys. 19(7), 931–945 (1989).

    Google Scholar 

  22. K.R. Goodearl, Partially Ordered Abelian Groups with Interpolation (American Mathe-matical Society, Providence, RI, 1986).

    Google Scholar 

  23. G. Grätzer, General Lattice Theory (Academic, New York, 1978).

    Google Scholar 

  24. R.J. Greechie, D.J. Foulis, and S. Pulmannová, “The center of an effect algebra,” Order 12, 91–106 (1995).

    Google Scholar 

  25. S.P. Gudder, Quantum Probability (Academic, San Diego, 1988).

    Google Scholar 

  26. F. Kôpka and F. Chovanec, “D-posets,” Mathematica Slovaca 44(1), 21–34 (1994).

    Google Scholar 

  27. D. Mundici, “Interpretation of AF C*-algebras in 4ukasiewicz sentential calculus,” J.Funct.Anal. 65, 15–63 (1986).

    Google Scholar 

  28. M. Navara and P. Pták, “Difference posets and orthoalgebras,” Department of Mathe-matics Report Series, Czech Technical University in Prague, Faculty of Electrical Engineering, No.93-8, 1–5 (1993).

    Google Scholar 

  29. M. Obeid, “Pasttings and centeria of orthoalgebras,” Ph.D.thesis (Kansas State University, Manhattan, KS, 1990).

    Google Scholar 

  30. K. Ravindran, “On a structure theory of effect algebras,” Ph.D.thesis, Kansas State University (UMI Dissertation Services, No.9629062, Ann Arbor, MI, 1996).

    Google Scholar 

  31. K. Ravindran, “States on effect algebras that have the 8-symmetry property,” Internat.J.Theoret.Phys. 37(1), 175–181 (1998).

    Google Scholar 

  32. M.H. Stone, “The theory of representations for a Boolean algebra,” Trans.AM.Math.Soc. 40, 37–111 (1936).

    Google Scholar 

  33. M.H. Stone, “Applications of the theory of Boolean rings to general topology,” Trans.Am.Math.Soc. 41, 375–481 (1937).

    Google Scholar 

  34. E.A. Walker, “Stone algebras, conditional events, and three valued logic,” IEEE Transac-tions on Systems, Man, and Cybernetics 24(12), 1699–1707 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foulis, D.J. MV and Heyting Effect Algebras. Foundations of Physics 30, 1687–1706 (2000). https://doi.org/10.1023/A:1026454318245

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026454318245

Keywords

Navigation