Skip to main content
Log in

Geometry of Black Hole Thermodynamics

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The Hessian of the entropy function can be thought of as a metric tensor on the state space. In the context of thermodynamical fluctuation theory Ruppeiner has argued that the Riemannian geometry of this metric gives insight into the underlying statistical mechanical system; the claim is supported by numerous examples. We study this geometry for some families of black holes. It is flat for the BTZ and Reissner–Nordström black holes, while curvature singularities occur for the Reissner–Nordström–anti–de Sitter and Kerr black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ruppeiner, G. (1979). Phys. Rev. A 20, 1608.

    Google Scholar 

  2. Landau, L. and Lifshitz, E. M. (1980). Statistical Physics (Pergamon), London.

  3. Ruppeiner, G. (1995). Rev. Mod. Phys. 67, 605

    Google Scholar 

  4. Ruppeiner, G. (1996). Rev. Mod. Phys. 68, 313(E).

    Google Scholar 

  5. Mrugała, R. (1984). Physica 125 A, 631.

    Google Scholar 

  6. Salamon, P., Nulton, J. D., and Berry, R. S. (1985). J. Chem. Phys. 82, 2433.

    Google Scholar 

  7. Brody, D. C. and Ritz, A. Geometric phase transitions, cond-mat/9903168.

  8. Dolan, B. P., Johnston, D. A., and Kenna, R. (2002). J. Phys. A 35, 9025.

    Google Scholar 

  9. Ccaron;encov, N. N. (1982). Statistical Decision Rules and Optimal Inference (American Mathematical Society, Providence, RI).

  10. Padmanabhan, T. (1990). Phys. Rep. 188, 285.

    Google Scholar 

  11. Ferrara, S., Gibbons, G. W., and Kallosh, R. (1997). Nucl. Phys. B 500, 75.

    Google Scholar 

  12. Davies, P. C. W. (1977). Proc. R. Soc. Lond. A 353, 499.

    Google Scholar 

  13. Weinhold, F. (1975). J. Chem. Phys. 63, 2479.

    Google Scholar 

  14. Salamon, P., Nulton, J. D., and Ihrig, E. (1984). J. Chem. Phys. 80, 436.

    Google Scholar 

  15. Hawking, S. W. and Page, D. N. (1983). Commun. Math. Phys. 87, 577.

    Google Scholar 

  16. Louko, J. and Winters-Hilt, S. N. (1996). Phys. Rev. D 54, 2647.

    Google Scholar 

  17. Chamblin, A., Emparan, R., Johnson, C. V., and Myers, R. C. (1999). Phys. Rev. D 60, 104026.

    Google Scholar 

  18. åman, J. E. (2002). “Manual for classi: Classification Programs for Geometries in General Relativity,” ITP, Stockholm University, Technical Report, Provisional edition. Distributed with the sources for sheep and classi.

  19. Bañados, M., Teitelboim, C., and Zanelli, J. (1992). Phys. Rev. Lett. 69, 1849.

    Google Scholar 

  20. Bañados, M., Henneaux, M., Teitelboim, C., and Zanelli, J. (1993). Phys. Rev. D 48, 1506.

    Google Scholar 

  21. Cai, R.-G. and Cho, J.-H. (1999). Phys. Rev. D 60, 067502.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Åman, J.E., Bengtsson, I. & Pidokrajt, N. Geometry of Black Hole Thermodynamics. General Relativity and Gravitation 35, 1733–1743 (2003). https://doi.org/10.1023/A:1026058111582

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026058111582

Navigation