Skip to main content
Log in

Identification and Quantitation of Allelochemicals from the Lichen Lethariella canariensis: Phytotoxicity and Antioxidative Activity

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Phytotoxicity-based extraction and fractionation were employed to separate allelochemicals contained in an extract of Lethariella canariensis. Twelve phenolic substances were isolated from the phytotoxic fraction “Letharal” of the thalli. These were identified by spectroscopic methods, physicochemical constants, and HPLC chemical correlation, and determined to be atranol (2), chloroatranol (3), hematommic acid (4), chlorohematommic acid (5), methyl hematommate (6), methyl chlorohematommate (7) (new compound), ethyl hematommate (8), ethyl chlorohematommate (9), methyl β-orsellinate (10), atranorin (11), chloroatranorin (12), and (+)-usnic acid (13). Further identification and quantification of these allelochemicals in the environment were conducted by HPLC. Several phenolic compounds showed moderate antimicrobial activity. The cytostatic activity of the polyphenols was investigated on U937 and HL-60 cells. All compounds were assayed, with the exception of 10. The “Letharal” mixture decreased cell viability in both cell lines. Protection against lipid peroxidation was investigated using brain homogenates. Compounds 2, 3, 6, 8, 11, and Letharal decreased H2O2/Fe+2 induced lipid peroxidation in a concentration-dependent manner, while 10 and 13 were unable to protect tissue against oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, M., Pratley, J. E., and Haig, T. 2000. Phytotoxicity of Vulpia residues, II: Separation, identification, and quantitation of allelochemicals from Vulpia myuros. J. Chem. Ecol.. 26:1465–1476.

    Google Scholar 

  • Barnes, J. P. and Putnam, A. R. 1985. Evidence for allelopathy by residues and aqueous extracts of rye (Secale cereale). Weed Sci. 34:384–390.

    Google Scholar 

  • Barnes, J. P. and Putnam, A. R. 1987. Role of benzoxazinones in allelopathy by rye (Secale cereale L.). J. Chem. Ecol. 13:889–906.

    Google Scholar 

  • Barnes, J. P., Putnam, A. R., Burke, B. A., and Aasen, A. 1987. Isolation and characterization of allelochemicals in rye herbage. Phytochemistry 26:1386–1390.

    Google Scholar 

  • Bradford, M. 1976. A rapid and sensitive method for quantification of protein utilizing the principle of protein dye binding. Anal. Biochem. 72:171–178.

    Google Scholar 

  • Cerutti, P. A. 1985. Prooxidant states and tumor promotion. Science 227:375–381.

    Google Scholar 

  • Collins, S. J., Gallo, R. C., and Gallagher, R. E. 1977. Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature 270:347–349.

    PubMed  Google Scholar 

  • Cordell, G. A., Chang, P. T. O., Fong, H. H. S., and Farnsworth, N. R. 1977. Xylosmacin, a new phenolic glucoside ester from Xylosma velutina (Flacourtiaceaea). Lloydia 40:340–343.

    PubMed  Google Scholar 

  • Culberson, C. F. 1969. Chemical and Botanical Guide to Lichen Products. The University of North Carolina Press, Chapel Hill, North Carolina.

    Google Scholar 

  • Dalvi, R. R., Singh, B., and Salunkhe, D. K. 1972. Physiological and biochemical investigations on the phytotoxicity of usnic acid. Phyton Buenos Aires. 29:63–72.

    Google Scholar 

  • Dauriac, H. and Rondon, Y. 1976. Quelques aspects des propietés d'un lichen, le Letharia vulpina (L.) Hue, en biologie végétale expérimentale, I: Action sur la germination du blé et de dévelopment de l'ail. Bull. Sot. Fr. 123:235–241.

    Google Scholar 

  • Ericsson, H. M. and Sherris, J. C. 1971. Antibiotic sensitivity testing. Report of an international collaborative study. Acta Pathol. Microbiol. Scand. Sect. B Suppl. 217:1–90.

    Google Scholar 

  • Fernández, O. and Pizarroso, A. 1958. Contribución a la química de los líquenes. Estudio de la Usnea canariensis (D.R.). Rev. Real Acad. Cien. Exact. Fis. Nat. Madr. 52:557–563.

    Google Scholar 

  • Follmann, G. and Hüneck, S. 1970. Mitteilungen über Flechteninhaltsstoffe LXXXIII. Zur Phytochemie und Chemotaxonomic einiger Usnea-Arten. Philippia 1:28–37.

    Google Scholar 

  • Follmann, G. and Nakagava, M. 1963. Keimhemmung von Angiospermen samen durch Flechtenstoffe. Naturwissenschaften 50:696–697.

    Google Scholar 

  • Frei, B. 1999. Molecular and biological mechanisms of antioxidant action. FASEB J. 13:963–964.

    PubMed  Google Scholar 

  • Fridovic, I. 1978. The biology of oxygen radicals. Science 201:875–880.

    PubMed  Google Scholar 

  • Gallagher, R., Collins, S., Trujillo, J., Mccredie, K., Ahearn, M., Tsai, S., Metzgar, R., Aulakh, G., Ting, R., Ruscetti, F., and Gallo, R. 1979. Characterization of the continuous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia. Blood 54:713–733.

    PubMed  Google Scholar 

  • García, F., Espinoza, C. A., Coltantes, S. G. G., Rios, V. V., and Quilhot, P. W. 1982. Lichen substances and the plant growth, III: The effects of roccellic acid on the growth of germlings of Ulva lactuca L. J. Hattori Bot. Lab. 53:443–447.

    Google Scholar 

  • Gonzalez, A., Vicente, C., and Legaz, M. E. 1984. A simple assay demonstrating the effect of rehydration on the orsellinate depside hydrolase activity of Evernia prunastri. J. Plant. Physiol. 116:219–224.

    Google Scholar 

  • Harborne, J. B. 1982. Introduction to Ecological Biochemistry, 2nd Edition Academic Press, London, Chap. 8.

    Google Scholar 

  • Hüneck, H. and Höfle, G. 1978. Struktur und 13C-NMR Spektroskopie von chlorhaltigen Flechtenxanthonen. Tetrahedron 34:2491–2502.

    Google Scholar 

  • Hüneck, S. and Schreiber, K. 1972. Wachstumsregulatorische Eigenschaften von Flechten-und Moos-Inhaltsstoffen. Phytochemistry 11:2429–2434.

    Google Scholar 

  • Hüneck, S., Steglich, W., and Höfle, G. 1977. Canarion, ein neues naphtochinon aus Usnea canariensis. Phytochemistry 16:121–123.

    Google Scholar 

  • Hylands, P. J. and Ingolfsdottir, K. 1985. The isolation of methyl β-orsellinate from Stereocaulon alpinum and comments on the isolation of 4,6-dihydroxy-2-methoxy-3-methylacetophenone from Stereocaulon species. Phytochemistry 24:127–129.

    Google Scholar 

  • Krog, H. 1976. Lethariella and Protousnea, two new lichen genera in Parmeliaceae. Norw. J. Bot. 23:83–106.

    Google Scholar 

  • Lawrey, J. D. 1986. Biological role of lichen substances. The Bryologist 89:111–122.

    Google Scholar 

  • Macmillan, J. G. and Browne, J. L. 1977. A regiospecific synthesis of hematommic acid. J. Org. Chem. 42:2526–2528.

    Google Scholar 

  • Mosmann, T. J. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55–63.

    Article  PubMed  Google Scholar 

  • National Committee for Clinical Laboratory Standards. 1990. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A2. Villanova, Pennsylvania.

    Google Scholar 

  • Nishitoba, Y., Nishimura, H., Nishiyama, T., and Mizutani, J. 1987. Lichen acids, plant growth inhibitors from Usnea longissima. Phytochemistry 26:3181–3185.

    Google Scholar 

  • Putnam, A. R. and Tang, C. S. 1986. The Science of Allelopathy. Wiley, New York, 317 pp.

    Google Scholar 

  • Ramaut, J. L. and Thonar, J. 1972a. Inhibition de la germination de differentes graines d'angiospermes par Evernia prunastri (L.) Ach. I. An. R. Soc. Esp. Fis. Quim. 68:575–595.

    Google Scholar 

  • Ramaut, J. L. and Thonar, J. 1972b. Inhibition de la germination de differentes graines d'angiospermes par Evernia prunastri (L.) Ach. II. An. R. Soc. Esp. Fis. Quim. 68:597–607.

    Google Scholar 

  • Rundel, P. W. 1978. The ecological role of secondary lichen substances. Biochem. Syst. Ecol. 6:157–170.

    Google Scholar 

  • Sánchez, M. L., Bats, J. P., and Moulines, J. 1997. Thermal hydrolysis of the main depsides and depsidones contained in the lichen used in perfumery. Riv. Ital. EPPOS. Spec. Num. (15th Journées Internationales Huiles Essentielles, 1996): 100–104.

  • Sundstrom, C. and Nilsson, K. 1976. Establishment and characterization of a human histiocytic lymphoma cell line (U937). Int. J. Cancer 17:565–577.

    PubMed  Google Scholar 

  • Terajima, Y., Ichikawa, H., Tokuda, K., and Nakamura, S. 1988. Quantitative analysis of oakmoss oil. Div. Food SCI (Flavors Fragrances: A World Perspect.). 18:685–695.

    Google Scholar 

  • Weston, L. A., Burke, B. A., and Putnam, A. R. 1987. Isolation, characterization and activity of phytotoxic compounds from quackgrass [Agropyron repens (L.) Beauv.]. J. Chem. Ecol. 13:403–421.

    Google Scholar 

  • Weston, L. A., Harmon, R., and Mueller, S. 1989. Allelopathic potential of sorghum-sudangrass hybrid (sudex). J. Chem. Ecol. 15:1855–1865.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bermejo Barrera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marante, F.J.T., Castellano, A.G., Rosas, F.E. et al. Identification and Quantitation of Allelochemicals from the Lichen Lethariella canariensis: Phytotoxicity and Antioxidative Activity. J Chem Ecol 29, 2049–2071 (2003). https://doi.org/10.1023/A:1025682318001

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025682318001

Navigation