Skip to main content
Log in

One axon-multiple functions: Specificity of lateral inhibitory connections by large basket cells

  • Published:
Journal of Neurocytology

Abstract

The functional specificity of the projections of single large basket cells of the cat primary visual cortex was studied using novel analytical approaches. The distribution of the labelled axons and that of the target cells were three-dimensionally reconstructed and compared quantitatively to orientation, direction and ocular dominance maps obtained with the intrinsic signal optical imaging technique. Quantitative analysis was carried out (i) for the entire basket cell, (ii) separately, for local and distal projections of the axon and (iii) by dissecting the same axon into two projection fields at the first bifurcation. It was found that although the functional distributions (orientation, direction and ocular dominance) for the entire cell were multi-modal and broadly tuned, individual main branches of the same cell displayed highly specific topography. In the further analysis, 2-dimensional probability density estimates of the target cell distributions revealed clear clustering which may be important for local subfield antagonism. These findings provide support to the idea that the same basket cell mediates several specific receptive field operations depending on the location of the target somata in the functional maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, B. Anderson, J. C., Martin, K. A. &; Nelson, J. C. (1997) Map of the synapses onto layer 4 basket cells of the primary visual cortex of the cat. Journal of Comparative Neurology 380, 230–242.

    PubMed  Google Scholar 

  • Ahmed, B., Anderson, J. C., Douglas, R. J., Martin, K. A. &; Nelson, J. C. (1994) Polyneuronal innervation of spiny stellate neurons in cat visual cortex. Journal of Comparative Neurology 341, 39–49.

    PubMed  Google Scholar 

  • Albus, K. &; Wahle, P. (1994) The topography of tangential inhibitory connections in the postnatally developing and mature striate cortex of the cat. European Journal of Neuroscience 6, 779–792.

    PubMed  Google Scholar 

  • Bonds, A. B. (1989) Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex. Visual Neuroscience 2, 41–55.

    PubMed  Google Scholar 

  • Borg-Graham, L. J., Monier, C. &; Fregnac, Y. (1998) Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393, 369–373.

    PubMed  Google Scholar 

  • BuzÁs, P., Eysel, U. T. &; KisvÁrday, Z. F. (1998) Functional topography of single cortical cells: An intracellular approach combined with optical imaging. Brain Research Protocols 3, 199–208.

    PubMed  Google Scholar 

  • BuzÁs, P., Eysel, U. T., AdorjÁn, P. &; KisvÁrday, Z. F. (2001) Axonal topography of cortical basket cells in relation to orientation, direction and ocular dominance maps. Journal of Comparative Neurology 437, 259–285.

    PubMed  Google Scholar 

  • Budd, J. M. L. &; KisvÁrday, Z. F. (2001) Lateral connectivity of inhibitory clutch cells in layer 4 of cat visual cortex (area 17). Experimental Brain Research 140, 245–250.

    Google Scholar 

  • Crook, J. M. &; Eysel, U. T. (1992) GABA-induced inactivation of functionally characterized sites in cat visual cortex (area 18): Effects on orientation tuning. Journal of Neuroscience 12, 1816–1825.

    PubMed  Google Scholar 

  • Crook, J. M., KisvÁrday, Z. F. &; Eysel, U. T. (1998) Evidence for a contribution of lateral inhibition to orientation tuning and direction selectivity in cat visual cortex: Reversible inactivation of functionally characterized sites combined with neuroanatomical tracing techniques. European Journal of Neuroscience 10, 2056–2075.

    PubMed  Google Scholar 

  • Crook, J. M., KisvÁrday, Z. F. &; Eysel, U. T. (2002) Intracortical mechanisms underlying orientation and direction selectivity studied with the GABA-inactivation technique. In Virtual Lesions: Examining Cortical Function with Reversible Deactivation (edited by Lomber, S. &; Galuske, R.) pp. 3–40. Oxford University Press.

  • de Angelis, G. C., Robson, J. G., Ohzawa, I. &; Freeman, R. D. (1992) Organization of suppression in receptive fields of neurons in cat visual cortex. Journal of Neurophysiology, 68, 144–163.

    PubMed  Google Scholar 

  • Defelipe, J. (2001) Cortical interneurons: From Cajal to 2001. Progress in Brain Research 136, 215–238.

    Google Scholar 

  • Hausser, M., Spruston, N. &; Stuart, G. J. (2000) Diversity and dynamics of dendritic signalling. Science 290, 739–744.

    PubMed  Google Scholar 

  • Heeger, D. J. (1992) Normalization of cell responses in cat striate cortex. Visual Neuroscience 9, 181–197.

    PubMed  Google Scholar 

  • Jones, J. P. &; Palmer, L. A. (1987) The two-dimensional spatial structure of simple receptive fields in cat striate cortex. Journal of Neurophysiology 58, 1187–1211.

    PubMed  Google Scholar 

  • Katz, L. C. &; Shatz, C. J. (1996) Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138.

    PubMed  Google Scholar 

  • Kawaguchi, Y. (1995) Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex. Journal of Neuroscience 15, 2638–2655.

    PubMed  Google Scholar 

  • KisvÁrday, Z. F. (1992) GABAergic networks of basket cells in the visual cortex. In Progress in Brain Research. Vol. 90., Mechanisms of GABA in the Visual System (edited by Mize, R. R., Marc, R. &; Sillito, A. M.) pp. 385–405. Amsterdam (The Netherlands): Elsevier.

    Google Scholar 

  • KisvÁrday, Z. F., BuzÁs, P. &; Eysel, U. T. (2001) Calculating directionmapsfromintrinsic signals revealed by optical imaging. Cerebral Cortex 11, 636–647.

    PubMed  Google Scholar 

  • KisvÁrday, Z. F., Kim, D.-S., Eysel, U. T. &; Bonhoeffer, T. (1994) Relationship between lateral inhibitory connections and the topography of orientation map in cat visual cortex. European Journal of Neuroscience 6, 1619–1632.

    PubMed  Google Scholar 

  • KisvÁrday, Z. F., Martin, K. A. C., Whitteridge, D. &; Somogyi, P. (1985) Synaptic connections of intracellularly filled clutch cells: A type of small basket cell in the visual cortex of the cat. Journal of Comparative Neurology 241, 11–137.

    Google Scholar 

  • KisvÁrday, Z. F., TÓth, ´E., Rausch, M. &; Eysel, U. T. (1997) Orientation-specific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of the cat. Cerebral Cortex 7, 605–618.

    PubMed  Google Scholar 

  • Krnjevic, K. (1997) Role of GABA in cerebral cortex. Canadian Journal of Physiology and Pharmacology 75, 439–451.

    Google Scholar 

  • Larkum, M. E., Zhu, J. J. &; Sakmann, B. (2001) Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. Journal of Physiology (London) 533, 447–466.

    Google Scholar 

  • Orban, G. A. (1984) Neuronal Operations in the Visual Cortex. Berlin: Springer.

    Google Scholar 

  • Palmer, L. A. &; Davis, T. L. (1981) Receptive-field structure in cat striate cortex. Journal of Neurophysiology 46, 260–276.

    PubMed  Google Scholar 

  • Peters, A. &; Regidor, J. (1981) A reassessment of the forms of nonpyramidal neurons in area 17 of cat visual cortex. Journal of Comparative Neurology 203, 685–716.

    PubMed  Google Scholar 

  • Roerig, B. &; Chen, B. (2002) Relationships of local inhibitory and excitatory circuits to orientation preference maps in ferret visual cortex. Cerebral Cortex 12, 187–198.

    PubMed  Google Scholar 

  • Sengpiel, F. &; Blakemore, C. (1994) Interocular control of neuronal responsiveness in cat visual cortex. Nature 368, 847–850.

    PubMed  Google Scholar 

  • Sengpiel, F., Freeman, T. C. &; Blakemore, C. (1995) Interocular suppression in cat striate cortex is not orientation selective. Neuroreport 6, 2235–2239.

    PubMed  Google Scholar 

  • Shmuel, A. &; Grinvald, A. (1996) Functional organization for direction of motion and its relationship to orientation maps in cat area 18. Journal of Neuroscience 16, 6945–6964.

    PubMed  Google Scholar 

  • Somers, D. C., Nelson, S. B. &; Sur, M. (1995)Anemergent model of orientation selectivity in cat visual cortical simple cells. Journal of Neuroscience 15, 5448–5565.

    PubMed  Google Scholar 

  • SOMOGYI, P. (1989) Synaptic organization of GABAergic neurons and GABAA receptors in the lateral geniculate nucleus and visual cortex. In Neural Mechanisms of Visual Perception (edited byLam, D. K.-T. &; Gilbert, C. D.) pp. 35–62. Texas: Portfolio Pub. Co.

    Google Scholar 

  • Somogyi, P. &; Freund, T. (1989) Immunocytochemistry and synaptic relationships of physiologically characterized HRP-filled neurons, In Neuronal Tract-tracing Methods 2 (edited by Heimer, L. &; ZÁborszky, l.) pp. 239–264. New York: Plenum Publishing Corp.

    Google Scholar 

  • SzentÁgothai, J. (1990) “Specificity versus (quasi-) randomness” revisited. Acta Morphologica Hungarica (Hungary) 38, 159–167.

    Google Scholar 

  • Troyer, T. W., Krukowski, A. E., Priebe, N. J. &; Miller, K. D. (1998) Contrast-invariant orientation tuning in cat visual cortex: Thalamocortical input tuning and correlation-based intracortical connectivity. Journal of Neuroscience 18, 5908–5927.

    PubMed  Google Scholar 

  • Wand, M. P. &; Jones, M. C. (1995) Kernel Smoothing. London: Chapman &; Hall.

    Google Scholar 

  • Yousef, T., Bonhoeffer, T., Kim, D.-S., Eysel, U. T., TÖth, ´E. &; KisvÁrday, Z. F. (1999) Orientation topography of layer 4 lateral networks revealed by optical imaging in cat visual cortex (area 18). European Journal of Neuroscience 11, 4291–4308.

    PubMed  Google Scholar 

  • Yousef, T., TÖth, É., Rausch, M., Eysel, U.T. &; KisvÁrday, Z. F. (2001) Topography of orientation centre connections in the primary visual cortex of the cat. Neuroreport 12, 1693–1699.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kisvárday, Z.F., Ferecskó, A.S., Kovács, K. et al. One axon-multiple functions: Specificity of lateral inhibitory connections by large basket cells. J Neurocytol 31, 255–264 (2002). https://doi.org/10.1023/A:1024122009448

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024122009448

Keywords

Navigation