Skip to main content
Log in

Assembly, stability and integrity of basement membranes in vivo

  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Abstract

Basement membranes are layered structures of the extracellular matrix which separate cells of various kinds from the surrounding stroma. One of the frequently recurring questions about basement membranes is how these structures are formed in vivo. Up to a few years ago, it was thought that basement membranes were formed spontaneously by a process of self-assembly of their components. However, it has now become clear that cell membrane receptors for basement membrane components are essential factors for the formation and stability of basement membranes in vivo. The present review highlights the modern concepts of basement membrane formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Airenne T, Lin Y, Olsson M, Ekblom P, Vainio S, Tryggvason K (2000) Differential expression of mouse laminin γ 2 and γ 2* chain transcripts. Cell Tissue Res 300: 129–137

    CAS  PubMed  Google Scholar 

  • Amano S, Akutsu N, Matsunaga Y, Kadoya K, Nishiyama T, Champliaud MF, Burgeson RE, Adachi A (2001) Importance of balance between extracellular matrix synthesis and degradation in basement membrane formation. Exp Cell Res 271: 249–262.

    Article  CAS  PubMed  Google Scholar 

  • Aumailley M, Smyth N (1998) The role of laminins in basement membrane function. J Anat 193: 1–21.

    Article  CAS  PubMed  Google Scholar 

  • Aumailley M, Battaglia C, Mayer U, Reinhardt D, Nischt R, Timpl R, Fox JW (1993) Nidogen mediates the formation of ternary complexes of basement membrane components. Kidney Int 42, 7–12.

    Article  Google Scholar 

  • Aumailley M, Pesch M, Tungaal L, Gaill F, Fässler R (2000) Altered synthesis of laminin-1 and absence of basement membrane component deposition in β1-integrin deficient embryoid bodies. J Cell Sci 113: 259–268.

    CAS  PubMed  Google Scholar 

  • Baloch Z, Klapper J, Buchanan L, Schwartz M, Amenta PS (1992) Ontogenesis of the murine hepatic extracellular matrix: an immunohistochemical study. Differentiation 51: 209–218.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee SD, Cohn RH, Bernfield MR (1977) Basal lamina of embryonic salivary epithelia. Production by the epithelium and role in maintaining the lobular morphology. J Cell Biol 73: 445–463.

    Article  PubMed  Google Scholar 

  • Battaglia C, Mayer U, Aumailley M, Timpl R (1992) Basement-membrane heparan sulfate proteoglycan binds to laminin. Eur J Biochem 208: 359–366

    Article  CAS  PubMed  Google Scholar 

  • Bernfield MR, Banerjee SB, Cohn RH (1972) Dependence of salivary epithelial morphology and branching morphogenesis upon acid mucopolysaccharide-protein (proteoglycan) at the epithelial surface. J Cell Biol 52: 674–689.

    Article  CAS  PubMed  Google Scholar 

  • Bernfield M, Banerjee SD, Koda JK, Rapraeger AC (1984) Remodelling of basement membrane: morphogenesis and maturation. In: Bernfield M, ed. Basement Membrane and Cell Movement. Ciba Foundation Symposium 108. London: Pitman, pp. 179–192.

    Google Scholar 

  • Bhowmick NA, Zent R, Ghiassi M, Mcdonnel M, Moses HL (2001) Integrin β1 signaling is necessary for transforming growth factor β activation of p38MAPK and epithelial plasticity. J Biol Chem 276: 46707–46713.

    Article  CAS  PubMed  Google Scholar 

  • Borges E, Jan Y, Ruoslahti E (2000) Platelet derived growth factor receptor β and vascular endothelial factor receptor 2 bind to the β3 integrin through its extracellular domain. J Biol Chem 275: 39867–39873.

    Article  CAS  PubMed  Google Scholar 

  • Bouvard D, Brakebusch C, Gustafsson E, Aszodi A, Bengtsson T, Berna A, Fässler R (2001) Functional consequences of integrin gene mutations in mice. Circulation Res 89: 211–213.

    Article  CAS  PubMed  Google Scholar 

  • Brakebusch C, Grose R, Quondamatteo F, Ramirez A, Pirro A, Svensson M, Herken R, Sasaki T, Timpl R, Werner S, Fässler R (2000) Skin and hair follicle integrity is crucially dependent on β1integrin expression on keratinocytes. EMBO J 19: 3990–4003.

    Article  CAS  PubMed  Google Scholar 

  • Bruckner-Tudermann L, Bruckner P (1998) Genetic diseases of the extracellular matrix: more than just connective tissue disorders. J Mol Med 76: 226–237.

    Article  Google Scholar 

  • Burgeson RE, Chiquet M, Deutzmann R, Ekblom P, Engel J, Kleinman HK, Martin GR, Meneguzzi G, Paulsson M, Sanes J, Timpl R, Trygvasson K, Yamada Y, Yurchenco PD (1994) A new nomenclature for the laminins. Matrix Biol 14: 209–211.

    Article  CAS  PubMed  Google Scholar 

  • Cheng YS, Champliaud MF, Burgeson RE, Marinkovich MP, Yurchenco PD (1997) Self-assembly of laminin isoforms. J Biol Chem 272: 31525–31532.

    Article  CAS  PubMed  Google Scholar 

  • Cohn RD, Henry MD, Michele DE, Barresi R, Saito F, Moore SA, Flanagan JD, Skwarchuk MW, Robbins ME, Mendell JR, Williamson RA, Campbell KP (2002) Disruption of Dag1 in differentiated skeletal muscle reveals a role for dystroglycan in muscle regeneration. Cell 110: 639–648.

    Article  CAS  PubMed  Google Scholar 

  • Colognato H, Yurchenco PD (1999) The laminin α2 expressed by dystrophic dy 2j mice is defective in its ability to form polymers. Current Biol 9: 1327–1330.

    Article  CAS  Google Scholar 

  • Colognato H, Yurchenco PD (2000) Form and function: the laminin family of heterotrimers. Dev Dyn 218: 213–234.

    Article  CAS  PubMed  Google Scholar 

  • Colognato H, Winkelmann DA, Yurchenco PD (1999) Laminin polymerization induces a receptor-cytoskeleton network. J Cell Biol 145: 619–631.

    Article  CAS  PubMed  Google Scholar 

  • Costell M, Gustafsson E, Aszodi A, Mörgelin M, Bloch W, Hunziker E, Addicks K, Timpl R, Fässler R (1999) Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol 147: 1109–1122.

    Article  CAS  PubMed  Google Scholar 

  • Cote PD, Moukhles H, Lindenbaum M, Carbonetto S (1999) Chimaeric mice deficient in dystroglycan develop muscular dystrophy and have disrupted myoneural synapses. Nat Genet 23: 338–342.

    Article  CAS  PubMed  Google Scholar 

  • Cote PD, Moukhles H, Carbonetto S (2002) Dystroglycan is not required for localization of dystrophin, syntrophin and neuronal nitric-oxide synthase at the sarcolemma but regulates integrin α7B expression and caveolin-3 distribution. J Biol Chem 227: 4672–4679.

    Article  CAS  Google Scholar 

  • Couvelard A, Bringuer AF, Dauge MC, Nejjari M, Darai E, Benfila JL, Feldmann G, Henin D, Scoazec JY (1998) Expression of integrins during liver organogenesis in humans. Hepatology 26: 839–847.

    Article  Google Scholar 

  • Couvelard A, Scoazec JY, Dauge MC, Bringuer AF, Potet F, Feldmann G (1996) Structural and functional differentiation of sinusoidal endothelial cells during liver organogenesis in humans. Blood 87: 4568–4580.

    CAS  PubMed  Google Scholar 

  • Defilippi P, Olivo C, Venturino M, Dolce L, Silengo L, Tarone G (1999) Actin cytoskeleton organization in response to integrin-mediated adhesion. Microsc Res Techn 47: 67–78.

    Article  CAS  Google Scholar 

  • DiPersio CM, Hodivala-Dilke K, Jaenisch R, Kreidberg JA, Hynes RO (1997) α3β1 integrin is required for normal development of the epidermal basement membrane. J Cell Biol 137: 729–742.

    Article  CAS  PubMed  Google Scholar 

  • Dong L, Chen Y, Lewis M, Hsieh J-C, Reing J, Chaillet JR, Howell CY, Mehlem M, Inoue S, Kuszak JR, DeGeest K, Chung AE (2002) Neurologic defects and selective disruption of basement membranes in mice lacking entactin-1/nidogen-1. Lab Invest 82: 1617–1630

    CAS  PubMed  Google Scholar 

  • Dowling J, Yu QC, Fuchs E (1996) β4 integrin is required for hemidesmosome formation, cell adhesion and cell survival. J Cell Biol 134: 559–572.

    Article  CAS  PubMed  Google Scholar 

  • Durbeej M, Campbell KP (1999) Biochemical characterization of the epithelial dystroglycan complex. J Biol Chem 274: 26609–26616.

    Article  CAS  PubMed  Google Scholar 

  • Durbeej M, Larsson E, Ibraghimov-Beskrovnaya O, Roberds SL, Campbell KP, Ekblom P (1995) Non-muscle α-dystroglycan is involved in epithelial development. J Cell Biol 130: 79–91.

    Article  CAS  PubMed  Google Scholar 

  • Durbeej M, Henry MD, Ferletta M, Campbell KP, Ekblom P (1998) Distribution of dystroglycan in normal adult mouse tissues. J Histochem Cytochem 46: 449–457.

    CAS  PubMed  Google Scholar 

  • Durbeej M, Talts JF, Henry MD, Yurchenco PD, Campbell KP, Ekblom P (2001) Dystroglycan binding to laminin α1LG4 module influences epithelial morphogenesis of salivary gland and lung in vitro. Differentiation 69: 121–134.

    Article  CAS  PubMed  Google Scholar 

  • Ekblom P (1989) Developmentally regulated conversion of mesenchyme to epithelium. FASEB J 3: 2141–2150.

    CAS  PubMed  Google Scholar 

  • Ekblom P (1993). Basement membranes in development. In: Rohrbach DH, Timpl R eds. Molecular and Cellular Aspects of Basement Membranes. San Diego: Academic Press, pp. 359–383.

    Google Scholar 

  • Ekblom P, Ekblom M, Fecker L, Klein K, Zhang HY, Kadoya Y, Chu ML, Mayer U, Timpl R (1994) Role of mesenchymal nidogen for epithelial morphogenesis in vitro. Development 120: 2003–2014.

    CAS  PubMed  Google Scholar 

  • Engel J (1993) Structure and function of laminin. In: Rohrbach DH, Timpl R eds. Molecular and Cellular Aspects of Basement Membranes. San Diego: Academic Press, pp. 147–176.

    Google Scholar 

  • Engel J (1994) Concepts of self-assembly in biological systems. In: Yurchenco PD, Birk DE, Mecham RP eds. Extracellular Matrix Assembly and Structure. San Diego: Academic Press, pp. 1–14.

    Google Scholar 

  • Engvall E, Wewer UM (1996) Domains of laminin. J Cell Biochem 61: 493–501.

    Article  CAS  PubMed  Google Scholar 

  • Enzan H, Himeno H, Hiroi M, Saibara T, Onishi S (1997) Development of hepatic sinusoidal structure with special reference to the Ito cells. Microsc Res Tech 39: 336–349.

    Article  CAS  PubMed  Google Scholar 

  • Erickson AC, Couchman JR (2000) Still more complexity in mammalian basement membranes. J Histochem Cytochem 48: 1291–1306.

    CAS  PubMed  Google Scholar 

  • Ervasti JM, Ohlendieck K, Kahl SD, Gaver MG, Campbell KP (1990) Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 345: 315–319.

    Article  CAS  PubMed  Google Scholar 

  • Feltri ML, Graus-Porta D, Previtali S, Nodari A, Migliavacca B, Cassetti A, Littlewood-Evans A, Reichardt LF, Messing A, Quattrini A, Mueller U, Wrabetz L (2002) Conditional disruption of β1 integrin in Schwann cells impedes interactions with axons. J Cell Biol 156: 199–209.

    Article  CAS  PubMed  Google Scholar 

  • Fleischmajer R, Perlish JS, Macdonald II ED, Schechter A, Murdoch AD, Iozzo RV, Yamada Y (1998a) There is binding of collagen IV to β1 integrin during early skin basement membrane assembly. Ann NY Acad Sci 857: 212–227.

    Article  CAS  PubMed  Google Scholar 

  • Fleischmajer R, Utani A, Macdonald II ED, Perlish JS, Pan TC, Chu ML, Nomizu M, Ninomiya Y, Yamada Y (1998b) Initiation of basement membrane formation at the epidemo-dermal interface involves assembly of laminins through binding to cell membrane receptors. J Cell Sci 111: 1929–1940.

    CAS  PubMed  Google Scholar 

  • Fox JW, Mayer U, Nischt R, Aumailley M, Reinhardt D, Weidemann H, Mann K, Timpl R, Kreig T, Engel J, Chu ML (1991) Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV. EMBO J 10: 3137–3146.

    CAS  PubMed  Google Scholar 

  • Freire E, Coelho-Sampaio T (2000) Self-assembly of laminin induced by acidic pH. J Biol Chem 275: 817–822.

    Article  CAS  PubMed  Google Scholar 

  • Georges-Labouesse E, Messadeq N, Yehia G, Cadalbert L, Dierich A, Le Meur M (1996) Absence of integrin α6 leads to epidermolysis bullosa and neonatal death in mice. Nat Genet 13: 370–373.

    Article  CAS  PubMed  Google Scholar 

  • Gesemann M, Brancaccio A, Schumacher B, Rüegg MA (1998) Agrin is a high affinity binding protein of dystroglycan in non-muscle tissue. J Biol Chem 273: 600–605.

    Article  CAS  PubMed  Google Scholar 

  • Giancotti F, Ruoslahti E (1999) Integrin signaling. Science 285: 1028–1032.

    Article  CAS  PubMed  Google Scholar 

  • Grant DS, Leblond CP, Kleinmann HK, Inoue S, Hassel J (1989) The incubation of laminin, collagen IV and heparan sulfate proteoglycan at 35°C yields basement membrane-like structures. J Cell Biol 108: 1567–1574.

    Article  CAS  PubMed  Google Scholar 

  • Hahn E, Wick G, Pencev D, Timpl R (1980) Distribution of basement membrane proteins in normal and fibrotic human liver: collagen type IV, laminin and fibronectin. Gut 21: 63–71.

    Article  CAS  PubMed  Google Scholar 

  • Halfter W, Dong S, Schurer B, Cole GJ (1998) Collagen XVIII is a basement membrane heparan sulfate proteoglycan. J Biol Chem 273: 25404–25412.

    Article  CAS  PubMed  Google Scholar 

  • Halfter W, Dong S, Balasubramani M, Bier ME (2001) Temporary disruption of the retinal basal lamina and its effect on retinal histogenesis. Dev Biol 238: 79–96.

    Article  CAS  PubMed  Google Scholar 

  • Hassel JR, Gehron Robey P, Barrach HJ, Wilczeck J, Rennard SI, Martin GR (1980) Isolation of heparan sulfate-containing proteoglycan from basement membrane. Proc Natl Acad Sci USA 77: 4494–4498.

    Article  Google Scholar 

  • Henry MD, Campbell KP (1998) A role of dystroglycan in basement membrane assembly. Cell 95: 859–870.

    Article  CAS  PubMed  Google Scholar 

  • Henry MD, Campbell KP (1999) Dystroglycan inside and out. Curr Opin Cell Biol 11: 602–607.

    Article  CAS  PubMed  Google Scholar 

  • Henry MD, Satz J, Brakebusch C, Costell M, Gustafsson E, Fässler R, Campbell KP (2001) Distinct roles for dystroglycan, β1-integrin and perlecan in cell surface laminin organization. J Cell Sci 114: 1137–1144.

    CAS  PubMed  Google Scholar 

  • Herken R, Barrach HJ (1985) Ultrastructural localization of type IV collagen and laminin in the seven-day-old mouse embryo. Anat Embryol 171: 365–371.

    Article  CAS  PubMed  Google Scholar 

  • Herken R, Götz W, Wattjes KH (1989) Initial development of capillaries in the neuroepithelium of the mouse. J Anat 164: 85–92.

    CAS  PubMed  Google Scholar 

  • Herken R, Götz W, Thies M (1990) Appearance of laminin, heparan sulfate proteoglycan and collagen type IV during initial stages of vascularisation of the neuroepithelium of the mouse embryo. J Anat 169: 189–195.

    CAS  PubMed  Google Scholar 

  • Hudson BG, Reeders ST, Tryggvason K (1993) Type IV collagen: structure, gene organization and role in human diseases. J Biol Chem 268: 26033–26036.

    CAS  PubMed  Google Scholar 

  • Hynes RO (1992) Integrins: versatility, modulation and signaling in cell adhesion. Cell 69: 11–25.

    Article  CAS  PubMed  Google Scholar 

  • Iivanaien A, Morita T, Tryggvason K (1999) Molecular cloning and tissues-specific expression of a novel murine laminin γ 3 chain. J Biol Chem 274: 14107–14111.

    Article  Google Scholar 

  • Inoue S (1989) Ultrastructure of basement membranes. Int Rev Cytol 117: 57–98.

    Article  CAS  PubMed  Google Scholar 

  • Inoue S, Leblond CP, Laurie GW (1983). Ultrastructure of Reichert's membrane, a multilayered basement membrane in the parietal wall of the rat yolk sac. J Cell Biol 97: 1524–1537.

    Article  CAS  PubMed  Google Scholar 

  • Iozzo RV (2001) Series introduction: heparan sulfate proteoglycans: intricate molecules with intriguing functions. J Clin Invest 108: 165–167.

    CAS  PubMed  Google Scholar 

  • Jacobson C, Cote P, Rossi S, Rotundo R, Carbonetto S (2001) The dystroglycan complex is necessary for stabilization of acetylcholine receptor clusters at neuromuscular junctions and formation of the synaptic basement membrane. J Cell Biol 152: 435–450.

    Article  CAS  PubMed  Google Scholar 

  • Kadoya Y, Kadoya K, Durbeej M, Holmvall K, Sorokin L, Ekblom P (1995) Antibodies against domain E3 of laminin-1 and integrin α6 subunit perturb branching epithelial morphogenesis of submandibular gland, but by different modes. J Cell Biol 129: 521–534.

    Article  CAS  PubMed  Google Scholar 

  • Kadoya Y, Salmivirta K, Talts JF, Kadoya K, Mayer U, Timpl R, Ekblom P (1997) Importance of nidogen binding to laminin γ 1 for branching epithelial morphogenesis of the submandibular gland. Development 124: 683–691.

    CAS  PubMed  Google Scholar 

  • Kalb E, Engel J (1991) Binding and calcium-induced aggregation of laminin onto lipid bilayers. J Biol Chem 266: 19047–19052.

    CAS  PubMed  Google Scholar 

  • Kimura N, Toyoshima T, Kojima T, Shimane M (1998) Entactin-2: a new member of basement membrane protein with high homology to entactin/nidogen. Exp Cell Res 241: 36–45.

    Article  CAS  PubMed  Google Scholar 

  • Klass CM, Couchmann J, Woods A (2000) Control of extracellular matrix assembly by syndecan-2 proteoglycan. J Cell Sci 113: 493–506.

    CAS  PubMed  Google Scholar 

  • Koch M, Olson PF, Albus A, Jin W, Hunter DD, Brunken WJ, Burgeson RE, Champliaud MF (1999) Characterization and expression of the laminin γ 3 chain: a novel, non-basement membrane-associated laminin chain. J Cell Biol 145: 605–617.

    Article  CAS  PubMed  Google Scholar 

  • Kohfeld E, Sasaki T, Göhring W, Timpl R (1998) Nidogen-2: a new basement membrane protein with diverse binding properties. J Mol Biol 282: 99–109.

    Article  Google Scholar 

  • Kreidberg JA, Donovan MJ, Goldstein SL, Rennke H, Shepherd K, Jones RC, Jaenisch R (1996) Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development 122: 3537–3547.

    CAS  PubMed  Google Scholar 

  • Kühn K, Glanville RW, Babel W, Qian RQ, Dieringer H, Voss T, Siebold B, Oberbäumer I, Schwarz U, Yamada Y (1985) The structure of type IV collagen. Ann NY Acad Sci 460: 14–24.

    Article  PubMed  Google Scholar 

  • Li S, Harrison D, Carbonetto S, Fässler R, Smyth N, Edgar D, Yurchenco PD (2002) Matrix assembly, regulation and survival functions of laminin and its receptors in embryonic stem cell differentiation. J Cell Biol 157: 1279–1290.

    Article  CAS  PubMed  Google Scholar 

  • Libby R, Champliaud MF, Claudepierre T, Xu Y, Gibbons EP, Koch M, Burgeson RE, Hunter DD, Brunken W (2000) Laminin expression in adult and developing retiane: evidence of two novel CNS laminins. J Neurosci 20: 6517–6528.

    CAS  PubMed  Google Scholar 

  • Liesi P, Kauppila T (2002) Induction of type IV collagen and other basement membrane associated proteins after spinal cord injury of the adult rat may participate in formation of the glial scar. Exp Neurol 173: 31–45.

    Article  CAS  PubMed  Google Scholar 

  • Lohikangas L, Gullberg D, Johansson S (2001) Assembly of laminin polymers is dependent on β1-integrins. Exp Cell Res 265: 135–144.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Hernandez A (1984) The hepatic extracellular matrix. I. Electron immunohistochemical studies in normal rat liver. Lab Invest 51: 57–74.

    CAS  PubMed  Google Scholar 

  • Martinez-Hernandez A, Amenta PS (1983) The basement membrane in pathology. Lab Invest 48: 656–677.

    CAS  PubMed  Google Scholar 

  • Martinez-Hernandez A, Martinez J (1991) The role of capillarization in hepatic failure: studies in carbon tetrachloride induced cirrhosis. Hepatology 14: 864–874.

    Article  CAS  PubMed  Google Scholar 

  • Mayer U, Timpl R (1994) Nidogen, a versatile binding protein of basement membranes. In: Yurchenco PD, Birk DE, Mecham RP, eds. Extracellular Matrix Assembly and Structure. San Diego: Academic Press, pp. 389–416.

    Google Scholar 

  • Miao H, Hu YL, Yuan S, Zhao Y, Chen BPC, Puzon-Mclaughin W, Tarui T, Shyy JYJ, Takada Y, Usami S, Chien S (2002) Differential regulation of Rho GTPases by β1 and β3 integrins: the role of an extracellular domain of integrin in intracellular signaling. J Cell Sci 115: 2199–2206.

    CAS  PubMed  Google Scholar 

  • Michele DE, Barresi R, Kanagawa M, Saito F, Cohn RD, Satz JS, Dollar J, Nishino I, Kelley RI, Somer H, Straub V, Mathews KD, Moore SA, Campbell KP (2002) Post-translational disruption of dystroglycan— ligand interactions in congenital muscular dystrophies. Nature 418: 417–422.

    Article  CAS  PubMed  Google Scholar 

  • Miner JH, Patton BL, Lentz SL, GIlbert DJ, Snider WD, Jenkins NA, Copeland NG, Sanes JR (1997) The laminin α chains: expression, develpomental transitions, and chromosomal locations of α1-5, identification of heterotrimeric laminins 8-11, and cloning of a novel α3 isoform. J Cell Biol 137: 685–701.

    Article  CAS  PubMed  Google Scholar 

  • Miosge N (2001) The ultrastructural composition of basement membranes in vivo. Histol Histopathol 16: 1239–1248.

    CAS  PubMed  Google Scholar 

  • Miosge N, Klenczar C, Herken R, Willem M, Mayer U (1999) Organization of the myotendinous junction is dependent on the presence of α7β1 integrin. Lab Invest 79: 1591–1599.

    CAS  PubMed  Google Scholar 

  • Miosge N, Quondamatteo F, Klenczar C, Herken R (2000) Nidogen-1: expression and ultrastructural localization during the onset of mesoderm formation in the early mouse embryo. J Histochem Cytochem 48: 229–237.

    CAS  PubMed  Google Scholar 

  • Montanaro F, Lindenbaum M, Carbonetto S (1999) α-dystroglycan is a laminin receptor involved in extracellular matrix assembly on myotubes and muscle cell viability. J Cell Biol 145: 1325–1340.

    Article  CAS  PubMed  Google Scholar 

  • Moore SA, Saito F, Chen J, Michele DE, Henry MD, Messing A, Cohn RD, Ross-Barta SE, Westra S, Williamson RA, Hoshi T, Campbell KP (2002) Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy. Nature 418: 422–425.

    Article  CAS  PubMed  Google Scholar 

  • Moro L, Venturino M, Bozzo C, Silengo L, Altruda F, Beguinot L, Tarone G, Defilippi P (1998) Integrins induce activation of EGF receptor: role in MAP kinase induction and adhesion-dependent cell survival. EMBO J 17: 6622–6632.

    Article  CAS  PubMed  Google Scholar 

  • Murdoch AD, Liu B, Schwarting R, Tuan RS, Iozzo RV (1993) Widespread expression of perlecan proteoglycan in basement membrane and extracellular matrices of human tissues as detected by a novel monoclonal antibody against domain III and by in situ hybridization. J Histochem Cytochem 42: 239–249.

    Google Scholar 

  • Murgia C, Blaike P, Kim N, Dans M, Petrie HT, Giancotti FG (1998) Cell cycle and adhesion defects in mice carrying a targeted deletion of the integrin β4 cytoplasmic domain. EMBO J 17: 3940–3951.

    Article  CAS  PubMed  Google Scholar 

  • Murray P, Edgar D (2000a) Regulation of programmed cell death by basement membranes in embryonic development. J Cell Biol 150: 1215–1221.

    Article  CAS  PubMed  Google Scholar 

  • Murray P, Edgar D (2000b) Regulation of the differentiation and behaviour of extra-embryonic endodermal cells by basement membranes. J Cell Sci 114: 931–939.

    Google Scholar 

  • Murshed M, Smyth N, Miosge N, Karolat J, Krieg T, Paulsson M, Nischt R (2000) The absence of nidogen-1 does not affect murine basement membrane formation. Mol Cell Biol 20: 7007–7012.

    Article  CAS  PubMed  Google Scholar 

  • Noonan D, Hassel JR (1993) Proteoglycans of basement membranes. In: Rohrbach DH, Timpl R, eds. Molecular and Cellular Aspects of Basement Membranes. San Diego: Academic Press, pp. 189–210.

    Google Scholar 

  • Parsons MJ, Campos I, Hirst EMA, Stemple D (2002) Removal of dystroglycan causes severe muscular dystrophy in zebrafish embryos. Development 129: 3505–3512.

    CAS  PubMed  Google Scholar 

  • Paulsson M (1992) Basement membrane proteins: structure, assembly and cellular interactions. Crit Rev Biochem Mol Biol 27: 93–127.

    Article  CAS  PubMed  Google Scholar 

  • Petitclerc E, Strömblad S, von Schalscha TL, Mitjans F, Piulats J, Montgomery AMP, Cheresh DA, Brooks P (1999) Integrin αvβ3 promotes M21 melanoma growth in human skin by regulating tumor cell survival. Cancer Res 59: 2724–2730.

    CAS  PubMed  Google Scholar 

  • Quondamatteo F, Scherf C, Miosge N, Herken R (1999) Immunohistochemical localization of laminin, nidogen and type IV collagen during the early development of human liver. Histochem Cell Biol 111: 39–47.

    Article  CAS  PubMed  Google Scholar 

  • Raghavan S, Bauer C, Mundschau G, Li Q, Fuchs E (2000) Conditional ablation of β1 integrin in skin: severe defects in epidermal proliferation, basement membrane formation and hair follicle invagination. J Cell Biol 150: 1149–1160.

    Article  CAS  PubMed  Google Scholar 

  • Ruzzi L, Gagnoux-Palacios L, Pinola M, Belli S, Meneguzzi G, D'Alession M, Zambruno G (1997) A homozygous mutation in the integrin α6 gene in junctional epidermolysis bullosa with pyloric atresia. J Clin Invest 99: 2826–2831.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Forsberg E, Bloch W, Addicks K, Fässler R, Timpl R (1998) Deficiency of β1 integrins in teratoma interferes with basement membrane assembly and laminin-1 expression. Exp Cell Res 238: 70–81.

    Article  CAS  PubMed  Google Scholar 

  • Schaffner F, Popper H (1963) Capillarization of hepatic sinusoids in man. Gastroenterology 44: 239–242.

    CAS  PubMed  Google Scholar 

  • Schymeinsky J, Nedbal S, Miosge N, Pöschl E, Rao C, Beier DR, Skarnes WC, Timpl R, Bader BL (2002) Gene structure and functional analysis of the mouse nidogen-2 Gene: nidogen-2 is not essential for basement membrane formation in mice. Mol Cell Biol 22: 6820–6830.

    Article  CAS  PubMed  Google Scholar 

  • Simon-Assmann P, Kedinger M, Haffen K (1986) Immunocytochemical localization of extracellular matrix proteins in relation to rat intestinal morphogenesis. Differentiation 32: 59–66.

    Article  CAS  PubMed  Google Scholar 

  • Simon-Assmann P, Simo P, Bouziges F, Haffen K, Kedinger M (1990) Synthesis of basement membrane proteins in the small intestine. Digestion 46: 12–21.

    Article  CAS  PubMed  Google Scholar 

  • Smyth N, Vatansever HS, Murray P, Meyer M, Frie C, Paulsson M, Edgar D (1999) Absence of basement membranes after targeting the LAMC1 gene results in early embryonic lethality due to failure of endoderm differentiation. J Cell Biol 144: 151–160.

    Article  CAS  PubMed  Google Scholar 

  • Sorokin L, Sonnenberg A, Aumailley M, Timpl R, Ekblom P (1990) Recognition of the laminin E8 cell-binding site by an integrin possessing the α6 subunit in developing kidney tubules. J Cell Biol 111: 1265–1273.

    Article  CAS  PubMed  Google Scholar 

  • Stichel CC, Müller HW (1998) The CNS lesion scar: new vistas on an old regeneration barrier. Cell Tissue Res 294: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Strömblad S, Becker JC, Yebra M, Brooks PC, Cheresh DA (1996) Suppression of p53 activity and p21WAF1/CIP1 expression by vascular cell integrin avβ3 during angiogenesis. J Clin Invest 98: 426–433.

    Article  PubMed  Google Scholar 

  • Talts JF, Andac Z, Göhring W, Brancaccio A, Timpl R (1999) Binding of the G domains of laminin α1 and α2 chains and perlecan to heparin, sulfatides, α-dystroglycan and several extracellular matrix proteins. EMBO J 18: 863–870.

    Article  CAS  PubMed  Google Scholar 

  • Timpl R (1993) Proteoglycans of basement membranes. Experientia 49: 417–427.

    Article  CAS  PubMed  Google Scholar 

  • Timpl R, Dziadek M (1986) Structure, development and molecular pathology of basement membranes. Int Rev Exp Pathol 29: 1–112.

    CAS  PubMed  Google Scholar 

  • Timpl R, Rohde H, Gehron Robey P, Rennard S, Foidart JM, Martin GR (1979) Laminin a glycoprotein from basement membranes. J Biol Chem 254: 9933–9937.

    CAS  PubMed  Google Scholar 

  • Tryggvason K, Wartiovaara J (2001) Molecular basis of glomerular permselectivity. Curr Opin Nephrol Hypertens 10: 543–549.

    Article  CAS  PubMed  Google Scholar 

  • Tsen G, Halfter W, Kröger S, Cole GJ (1995) Agrin is a heparan sulfate proteoglycan. J Biol Chem 270: 3392–3399.

    Article  CAS  PubMed  Google Scholar 

  • Tsiper M, Yurchenco PD (2002) Laminin assembles into separate basement membrane and fibrillar matrices in Schwann cells. J Cell Sci 115: 1005–1015.

    CAS  PubMed  Google Scholar 

  • Tungaal P, Smyth N, Paulsson M, Ott MC (2000) Laminins: structure and genetic regulation. Microsc Res Techn 51: 214–227.

    Article  Google Scholar 

  • van der Flier A, Sonnenberg A (2001) Function and interactions of integrins. Cell Tissue Res 305: 285–298.

    Article  CAS  PubMed  Google Scholar 

  • van der Neut R, Krimpenfort P, Calafat J, Niessen CM, Sonnenberg A (1996) Epithelial detachment due to absence of hemidesmosomes in integrin β4 null mice. Nat Genet 13: 366–369.

    Article  CAS  PubMed  Google Scholar 

  • Vidal F, Aberdam D, Miquel C, Christiano AM, Pulkkinen L, Uitto J, Ortonne P, Meneguzzi G (1995) Integrin β4 mutations associated with junctional epidermolysis bullosa with pyloric atresia. Nat Genetics 10: 229–234.

    Article  CAS  Google Scholar 

  • Wang JF, Zhang XF, Groopman JE (2001) Stimulation of β1 integrin induces tyrosine phosphorilation of vascular endothelial growth factor receptor-3 and modulates cell migration. J Biol Chem 276: 41950–41957.

    Article  CAS  PubMed  Google Scholar 

  • Watt F (2001) Stem cell fate and patterning in mammalian epidermis. Curr Opin Gen Dev 11: 410–417.

    Article  CAS  Google Scholar 

  • Williamson RA, Henry MD, Daniels KJ, Hrstka RF, Lee JC, Sunada Y, Ibraghimov-Beskrovnaya O, Campbell KP (1997) Dystroglycan is essential for early embryonic development: disruption of Reichert's membrane in Dag1-null mice. Hum Mol Gen 6: 831–841.

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Palmer KC, Relan N, Diglio C, Schuger L (1998) Role of laminin polymerization at the epithelial mesenchymal interface in bronchial morphogenesis. Development 125: 2621–2629.

    CAS  PubMed  Google Scholar 

  • Yurchenco PD (1994) Assembly of laminin and type IV collagen into basement membrane networks. In: Yurchenco PD, Birk DE, Mecham RP, eds. Extracellular Matrix Assembly and Structure. San Diego: Academic Press, pp. 351–388.

    Google Scholar 

  • Yurchenco PD, Furthmayr H (1984) Self-assembly of basement membrane collagen. Biochemistry 23: 1839–1850.

    Article  CAS  PubMed  Google Scholar 

  • Yurchenco PD, O'Rear J (1993) Supramolecular organization of basement membranes. In: Rohrbach DH, Timpl R, eds. Molecular and Cellular Aspects of Basement Membranes. San Diego: Academic Press, pp. 20–47.

    Google Scholar 

  • Yurchenco PD, Ruben GC (1987) Basement membrane structure in situ: evidence for lateral associations in the type IV collagen network. J Cell Biol 105: 2559–2568.

    Article  CAS  PubMed  Google Scholar 

  • Yurchenco PD, Schittny JC (1990). Molecular architecture of basement membranes. FASEB J 4: 1577–1590.

    CAS  PubMed  Google Scholar 

  • Yurchenco PD, Tsilibary EC, Charonis AS, Furthmayr H (1985) Laminin polymerization in vitro. Evidence for a two-step assembly with domain specificity. J Biol Chem 260: 7636–7644.

    CAS  PubMed  Google Scholar 

  • Yurchenco PD, Cheng YS, Colognato H (1992) Laminin forms an independent network in basement membranes. J Cell Biol 117: 1119–1133.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quondamatteo, F. Assembly, stability and integrity of basement membranes in vivo . Histochem J 34, 369–381 (2002). https://doi.org/10.1023/A:1023675619251

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023675619251

Keywords

Navigation