Skip to main content
Log in

In vitro cellular response to titanium electrochemically coated with hydroxyapatite compared to titanium with three different levels of surface roughness

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The in vitro response of primary human osteoblast-like (HOB) cells to a novel hydroxyapatite (HA) coated titanium substrate, produced by a low temperature electrochemical method, was compared to three different titanium surfaces: as-machined, Al2O3-blasted, plasma-sprayed with titanium particles. HOB cells were cultured on different surfaces for 3, 7 and 14 days at 37 °C. The cell morphology was assessed using scanning electron microscopy (SEM). Cell growth and proliferation were assessed by the measurement of total cellular DNA and tritiated thymidine incorporation. Measurement of alkaline phosphatase (ALP) production was used as an indicator of the phenotype of the cultured HOB cells. After three days incubation, the electrochemically coated HA surface produced the highest level of cell proliferation, and the Al2O3-blasted surface the lowest. Interestingly, as the incubation time was increased to 7 days all surfaces produced a large drop in tritiated thymidine incorporation apart from the Al2O3-blasted surface, which showed a small increase. Cells cultured on all four surfaces showed an increased expression of ALP with increased incubation time, although there was not a statistically significant difference between surfaces at each time point. Typical osteoblast morphology was observed for cells cultured on all samples. The HA coated sample showed evidence of a deposited phase after three days of incubation, which was not observed on any other surface. Cells incubated on the HA coated substrate appeared to exhibit the highest number of cell processes attaching to the surface, which was indicative of optimal cell attachment. The crystalline HA coating, produced by a low temperature route, appeared to result in a more bioactive surface on the c.p. Ti substrate than was observed for the other three different Ti surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Davies, in “Bioceramics Vol. 9” (University Press, Cambridge, 1996) pp. 27-30.

    Google Scholar 

  2. M. Browne and P. J. Gregson, Biomaterials 15 (1994) 894.

    Google Scholar 

  3. J. C. Keller, R. A. Draughon, J. P. Wightman, W. J. Dougherty and S. D. Meletiou, J. Oral. Maxillofac. Impl. 5 (1990) 360.

    Google Scholar 

  4. B. D. Boyan, T. W. Hummert, D. D. Dean and Z. Schwartz, Biomaterials 17 (1996) 137.

    Google Scholar 

  5. Y. Oshida, R. Sachdeva, S. Miyazaki and J. Daly, J. Mat. Sci. Mater. Med. 4 (1993) 443.

    Google Scholar 

  6. K. Kieswetter, Z. Shwartz, T. W. Hummert, D. L. Cochran, J. Simpson, D. D. Dean and B. D. Boyan, J. Biomed. Mater. Res. 32 (1996) 55.

    Google Scholar 

  7. J. Y. Martin, Z. Shwartz, T. W. Hummert, D. M. Schraub, J. Simpson, J. Lankford, D. D. Dean, D. L. Cochran and B. D. Boyan, ibid. 29 (1995) 389.

    Google Scholar 

  8. J. C. Keller, Impl. Dent. 7 (1998) 331.

    Google Scholar 

  9. S. L. Wheeler, Int. J. Oral. Maxillofac. Impl. 11 (1996) 340.

    Google Scholar 

  10. H. Caulier, S. Vercaigne, I. Naert, J. P. C. M. Van Der Waerden, J. G. C. Wolke, W. Kalk and J. A. Jansen, J. Biomed. Mater. Res. 34 (1997) 121.

    Google Scholar 

  11. A. Wennerberg, T. Albrektsson and B. Andersson, Int. J. Oral. Maxillofac. Impl. 8 (1993) 622.

    Google Scholar 

  12. A. Wennerberg, A. Ektessabi, T. Albrektsson, C. Johansson and B. Anderson, ibid. 12 (1997) 486.

    Google Scholar 

  13. M. Wong, J. Eulenberger, R. Schenk and E. Hunziker, J. Biomed. Mater. Res. 29 (1995) 1567.

    Google Scholar 

  14. K. Gotfredsen, A. Wennerberg, C. Johansson, L. T. Skovgaard and E. Hjortinghansen, ibid. 29 (1995) 1223.

    Google Scholar 

  15. R. Branemark, L.-O. Öhrnell, P. Nilsson and P. Thomsen, Biomaterials 18 (1997) 969.

    Google Scholar 

  16. H. Zeng, K. K. Chittur and W. R. Lacefield, ibid. 20 (1999) 377.

    Google Scholar 

  17. S. Takashima, S. Hayakawa, C. Ohtsuki and A. Osaka, in “Bioceramics Vol. 9” (University Press, Cambridge, 1996) pp. 217-220.

    Google Scholar 

  18. L. Sun, C. C. Berndt, K. A. Gross and A. Kucuk, J. Biomed. Mater. Res. (Appl. Biomater.) 58 (2001) 570.

    Google Scholar 

  19. M. H. Prado Da Silva, J. H. C. Lima, G. A. Soares, C. N. Elias, M. C. De Andrade, S. M. Best and I. R. Gibson, Surf. Coat. Technol. 137 (2001) 270.

    Google Scholar 

  20. L. Di Silvio and N. Gurav, in “Human Cell Culture Vol. 5” (Kluwer Academic Publishers, 2001) pp. 221-241.

  21. L. Di Silvio, M. J. Dalby and W. Bonfield, J. Mater. Sci. Mater. Med. 9 (1998) 845.

    Google Scholar 

  22. M. H. Prado Da Silva, PhD Dissertation, COPPE/UFRJ (1999).

  23. K. Anselme, P. Linez, M. Bigerelle, D. Le Maguer, A. Le Maguer, P. Hardouin, H. F. Hildebrand, A. Iost and J. M. Leroy, Biomaterials 21 (2000) 1567.

    Google Scholar 

  24. D. D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee and Y. F. Missirlis, ibid. 22 (2001) 1241.

    Google Scholar 

  25. K. Anselme, M. Bigerelle, B. Noel, E. Dufresne, D. Judas, A. Iost and P. Hardouin, J. Biomed. Mater. Res. 49 (2000) 155.

    Google Scholar 

  26. I. Degasne, M. F. Baslé, V. Demais, G. Huré, M. Lesourd, B. Grolleau, L. Mercier and D. Chappard, Calc. Tiss. Int. 64 (1999) 499.

    Google Scholar 

  27. K. T. Bowers, J. C. Keller, B. A. Randolph, D. G. Wick and C. M. Michaels, Int. J. Oral. Maxillofac. Impl. 7 (1992) 302.

    Google Scholar 

  28. A. Curtis and C. Wilkinson, Biomaterials 18 (1997) 1573.

    Google Scholar 

  29. R. G. Flemming, C. J. Murphy, G. A. Abrams, S. L. Goodman and P. F. Nealey, ibid. 20 (1999) 573.

    Google Scholar 

  30. F. Podestra, T. Roth, F. Ferrara and M. Lorenzi, Diabetologica 40 (1997) 879.

    Google Scholar 

  31. J. Huang, L. Di Silvio, M. Wang, K. E. Tanner and W. Bonfield, in “Bioceramics, Vol. 10” (University Press, Cambridge, 1997) p. 519.

    Google Scholar 

  32. M. H. Prado Da Silva, G. D. A. Soares, C. N. Elias, I. R. Gibson and S. M. Best, Key Eng. Mater. 192 (2000) 59.

    Google Scholar 

  33. C. Y. Yang, B. C. Wang, E. Chang and B. C. Wu, J. Mater. Sci. Mater. Med. 6 (1995) 258.

    Google Scholar 

  34. B. Labat, N. Demonet, A. Rattner, J. L. Aurelle, J. Rieu, J. Frey and A. Chamson, J. Biomed. Mater. Res. 46 (1999) 331.

    Google Scholar 

  35. D. D. Deligianni, N. D. Katsala, P. G. Koutsoukos and Y. F. Missirlis, Biomaterials 22 (2001) 87.

    Google Scholar 

  36. J. L. Ong, C. A. Hoppe, H. L. Cardenas, R. Cavin, D. L. Carnes, A. Sogal and G. N. Raikar, J. Biomed. Mater. Res. 39 (1998) 176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prado da Silva, M.H., Soares, G.D.A., Elias, C.N. et al. In vitro cellular response to titanium electrochemically coated with hydroxyapatite compared to titanium with three different levels of surface roughness. Journal of Materials Science: Materials in Medicine 14, 511–519 (2003). https://doi.org/10.1023/A:1023455913567

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023455913567

Keywords

Navigation